21 research outputs found

    Effect of premature rupture of membranes on the maternal and fetal prognosis during childbirth at the gynecology-obstetrics department of the Matam Communal Medical Center, Conakry, Guinea

    Get PDF
    Background: Premature rupture of membranes (RPM) is defined by rupture of the amnion and chorion before entering labor within 24 hours leading to vaginal discharge of amniotic fluid without uterine contractions. Objective of this study was to improving the management of premature Ruptures of the membranes received in the service.Methods: This was a descriptive and analytical prospective study lasting six months from January 1 to June 30 2016.Results: During the study period, we collected 108 cases of RPM out of 1543 deliveries, representing a hospital frequency of 7%. RPM had more frequently concerned pregnant women aged 25-29 (37.04%), housewife (37.03%), primiparous (45.37%) and referral (52.78%). 95.37% were single pregnancies with cephalic presentation (80%) received between 37-42 weeks (84.26%). Management mainly consisted of antibiotic prophylaxis (100%), fetal pulmonary maturation and childbirth. The vagina was the main mode of delivery (62.04%). The maternal prognosis was dominated by chorioamnionitis (12.96%). The fetal one was made up of respiratory distress (40.71%) and prematurity (12.39%).Conclusions: RPM is frequent at the Matam municipal medical center. It is essential for its prevention to ensure health education of the population in general and genital hygiene in particular, to make a coherent prenatal follow-up while putting a particular accent on the detection and the treatment of genital infections

    CD209 Genetic Polymorphism and Tuberculosis Disease

    Get PDF
    BACKGROUND: Tuberculosis causes significant morbidity and mortality worldwide, especially in sub-Saharan Africa. DC-SIGN, encoded by CD209, is a receptor capable of binding and internalizing Mycobacterium tuberculosis. Previous studies have reported that the CD209 promoter single nucleotide polymorphism (SNP)-336A/G exerts an effect on CD209 expression and is associated with human susceptibility to dengue, HIV-1 and tuberculosis in humans. The present study investigates the role of the CD209 -336A/G variant in susceptibility to tuberculosis in a large sample of individuals from sub-Saharan Africa. METHODS AND FINDINGS: A total of 2,176 individuals enrolled in tuberculosis case-control studies from four sub-Saharan Africa countries were genotyped for the CD209 -336A/G SNP (rs4804803). Significant overall protection against pulmonary tuberculosis was observed with the -336G allele when the study groups were combined (n = 914 controls vs. 1262 cases, Mantel-Haenszel 2 x 2 chi(2) = 7.47, P = 0.006, odds ratio = 0.86, 95%CI 0.77-0.96). In addition, the patients with -336GG were associated with a decreased risk of cavitory tuberculosis, a severe form of tuberculosis disease (n = 557, Pearson's 2x2 chi(2) = 17.34, P = 0.00003, odds ratio = 0.42, 95%CI 0.27-0.65). This direction of association is opposite to a previously observed result in a smaller study of susceptibility to tuberculosis in a South African Coloured population, but entirely in keeping with the previously observed protective effect of the -336G allele. CONCLUSION: This study finds that the CD209 -336G variant allele is associated with significant protection against tuberculosis in individuals from sub-Saharan Africa and, furthermore, cases with -336GG were significantly less likely to develop tuberculosis-induced lung cavitation. Previous in vitro work demonstrated that the promoter variant -336G allele causes down-regulation of CD209 mRNA expression. Our present work suggests that decreased levels of the DC-SIGN receptor may therefore be protective against both clinical tuberculosis in general and cavitory tuberculosis disease in particular. This is consistent with evidence that Mycobacteria can utilize DC-SIGN binding to suppress the protective pro-inflammatory immune response

    Variants of the CD40 ligand gene are not associated with increased susceptibility to tuberculosis in West Africa.

    No full text
    Evidence for linkage between tuberculosis and human chromosomal region Xq26 has previously been described. The costimulatory molecule CD40 ligand, encoded by TNFSF5 and located at Xq26.3, is a promising positional candidate. Interactions between CD40 ligand and CD40 are involved in the development of humoral- and cell-mediated immunity, as well as the activation of macrophages, which are the primary host and effector cells for Mycobacterium tuberculosis. We hypothesised that common variation within TNFSF5 might affect susceptibility to tuberculosis disease and, thus, might be responsible for the observed linkage to Xq26. Sequencing 32 chromosomes from a Gambian population identified nine common polymorphisms within the coding, 3' and 5' regulatory sequences of the gene. Six single nucleotide polymorphisms (SNPs) and a 3' microsatellite were genotyped in 121 tuberculosis patients and their available parents. No association with tuberculosis was detected for these variants using a transmission disequilibrium test, although one SNP at -726 showed some evidence of association in males. This finding, however, did not replicate in a separate case control study of over 1,200 West African individuals. We conclude that common genetic variation in TNFSF5 is not likely to affect tuberculosis susceptibility in West Africa and the linkage observed in this region is not due to variation in TNFSF5

    First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    Get PDF
    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs

    Different profiles of body mass index variation among patients with multidrug-resistant tuberculosis: a retrospective cohort study

    No full text
    International audienceBackground: Despite the predictive role of body weight variation in treatment outcome in multidrug-resistant tuberculosis (MDR-TB), few corroborating data are available. We studied weight variation in patients with MDR-TB to identify groups of weight change and to determine factors that influence these changes. Methods: We analyzed patients with rifampicin resistance who were treated with an MDR-TB treatment regimen between June 07, 2016 and June 22, 2018 at three major drug-resistant TB centers in Guinea. Patients were seen monthly until the end of treatment. Clinical outcome was the body mass index (BMI). We used a linear mixed model to analyze trajectories of BMI and a latent class mixed model to identify groups of BMI trajectories. Results: Of 232 patients treated for MDR-TB during the study period, 165 were analyzed. These patients had a total of 1387 visits, with a median of 5 visits (interquartile range, 3-8 visits). Monthly BMI increase was 0.24 (SE 0.02) per kg/m2. Factors associated with faster BMI progression were success of MDR-TB treatment (0.24 [SE 0.09] per kg/m2; p = 0.0205) and absence of lung cavities on X-ray (0.18 [0.06] per kg/m2; p = 0.0068). Two groups of BMI change were identified: rapid BMI increase (n = 121; 85%) and slow BMI increase (n = 22; 15%). Patients in the slow BMI increase group were mostly female (68%) had no history of TB treatment (41%), had a positive HIV infection (59%), and had a more severe clinical condition at baseline, characterized by a higher frequency of symptoms including depression (18%), dyspnea (68%), poor adherence to MDR-TB treatment (64%), lower platelet count, and higher SGOT. These patients also had a longer time to initial culture conversion (log-rank test: p = 0.0218). Conclusion: Quantitative BMI data on patients with MDR-TB treated with a short regimen allowed the identification of subgroups of patients with different trajectories of BMI and emphasized the usefulness of BMI as a biomarker for the monitoring of MDR-TB treatment outcom

    Polymorphism within the interferon-gamma/receptor complex is associated with pulmonary tuberculosis.

    No full text
    RATIONALE: Interferon-gamma (IFN-gamma) is of central interest in the study of tuberculosis. A number of single-gene mutations have been identified in the IFN-gamma signaling pathway that predispose to severe mycobacterial disease, but the relevance of polymorphism within these genes to the common phenotype of tuberculosis remains unclear. METHODS: A total of 1,301 individuals were included in a large, detailed study of West African populations with pulmonary tuberculosis. We investigated disease association with the genes encoding IFN-gamma and its receptor subunits (IFNG, IFNGR1, and IFNGR2). RESULTS: Within the IFNG gene, two promoter variants showed evidence of novel disease association: -1616GG (odds ratio [OR], 1.49; 95% confidence interval [CI], 1.11-2.00; p = 0.008) and +3234TT (OR, 1.40; 95% CI, 1.09-1.80; p = 0.009). The +874AA genotype was not significantly more frequent among cases over control subjects (OR, 1.16; 95%CI, 0.89-1.51; p = 0.25). In addition, novel disease association was also found with the -56CC genotype of the IFNGR1 promoter (OR, 0.75; 95% CI, 0.57-0.99; p = 0.041). No disease association was seen with the IFNGR2 locus. CONCLUSIONS: These results provide evidence of a significant role for genetic variation at the IFNG locus and provide detailed understanding of the genetic mechanisms underlying this association. The disease association with IFNGR1 is novel, and together these findings support the hypothesis that genetically determined variation in both IFN-gamma production and responsiveness influences the risk of developing tuberculosis

    Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa.

    No full text
    The sst1 locus has been identified in a mouse model to control resistance and susceptibility of Mycobacterium tuberculosis infection. Subsequent studies have now identified Ipr1 (intracellular pathogen resistance 1) to be the gene responsible. Ipr1 is encoded within the sst1 locus and is expressed in the tuberculosis lung lesions and macrophages of sst1-resistant, but not sst1-susceptible mice. We have therefore examined the closest human homologue of Ipr1, SP110, for its ability to control susceptibility to M. tuberculosis infection in humans. In a study of families from The Gambia we have identified three polymorphisms that are associated with disease. On examination of additional families from Guinea-Bissau and the Republic of Guinea, two of these associations were independently replicated. These variants are in strong linkage disequilibrium with each other and lie within a 31-kb block of low haplotypic diversity, suggesting that a polymorphism within this region has a role in genetic susceptibility to tuberculosis in humans
    corecore