137 research outputs found

    Power systems for production, construction, life support and operations in space

    Get PDF
    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

    SP-100 Advanced Technology Program

    Get PDF
    The goal of the triagency SP-100 Program is to develop long-lived, compact, lightweight, survivable nuclear reactor space power systems for application to the power range 50 kWe to 1 MWe. The successful development of these systems should enable or significantly enhance many of the future NASA civil and commercial missions. The NASA SP-100 Advanced Technology Program strongly augments the parallel SP-100 Ground Engineering System Development program and enhances the chances for success of the overall SP-100 program. The purpose of this paper is to discuss the key technical elements of the Advanced Technology Program and the progress made in the initial year and a half of the project

    Results of closed cycle MHD power generation test with a helium-cesium working fluid

    Get PDF
    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel

    Demonstrated survivability of a high temperature optical fiber cable on a 1500 pound thrust rocket chamber

    Get PDF
    A demonstration of the ability of an existing optical fiber cable to survive the harsh environment of a rocket engine was performed at the NASA Lewis Research Center. The intent of this demonstration was to prove the feasibility of applying fiber optic technology to rocket engine instrumentation systems. Extreme thermal transient tests were achieved by wrapping a high temperature optical fiber, which was cablized for mechanical robustness, around the combustion chamber outside wall of a 1500 lb Hydrogen-Oxygen rocket engine. Additionally, the fiber was wrapped around coolant inlet pipes which were subject to near liquid hydrogen temperatures. Light from an LED was sent through the multimode fiber, and output power was monitored as a function of time while the engine was fired. The fiber showed no mechanical damage after 419 firings during which it was subject to transients from 30 K to 350 K, and total exposure time to near liquid hydrogen temperatures in excess of 990 seconds. These extreme temperatures did cause attenuation greater than 3 dB, but the signal was fully recovered at room temperature. This experiment demonstrates that commercially available optical fiber cables can survive the environment seen by a typical rocket engine instrumentation system, and disclose a temperature-dependent attenuation observed during exposure to near liquid hydrogen temperatures

    Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    Get PDF
    A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes

    Nuclear power systems for lunar and Mars exploration

    Get PDF
    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications

    Vibrational testing of optical fiber connector joints

    Get PDF
    An experimental study was performed to determine the effects of vibration on the propagation of light through SMA- and ST-type fiber-optic connectors. A multimode, fiber-optic link was vibrated from 0 to 10,000 Hz at a constant peak acceleration along the connector transverse and longitudinal axes. All other environmental parameters were ambient. Transfer characteristics through the connection were examined as a function of vibrational frequency using both laser and light-emitting diode (LED) light to illuminate the system. Slight differences in operation between the SMA and ST connectors were observed with no appreciative attenuation as a result of vibration. Vibration did cause the constant-amplitude input light to be modulated in the connector; however, the amplitude of vibration-induced noise was less than 3 standard deviations from the mean

    Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    Get PDF
    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs

    Nuclear technology and the space exploration missions

    Get PDF
    The strategy for a major exploration initiative leading to permanent human presence beyond earth orbit is still being developed; however enough is known to begin defining the role of nuclear technologies. Three broad areas are discussed: low power (less than 10 kWe) rover/vehicle power systems; integrated, evolutionary base power systems (25 to 100 kW) and nuclear energy for electric propulsion (2 to 100 MWe); and direct thermal propulsion (1000s MW). A phased, evolutionary approach is described for both the moon and Mars, and the benefits of nuclear technologies relative to solar and their integration are described

    Closed cycle MHD power generation experiments in the NASA Lewis Facility

    Get PDF
    Many modifications were made in the MHD facility. These include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation of all the high temperature components from each other and from ground, and experimentation with various cesium seed vaporization and injection techniques. With the exception of the cesium system which needs further improvement the above modifications were quite successful and resulted in improvements in generator performance. The facility was run for a total of 400 hours in the past year, with 70 hours of this operation at temperatures of 2000 K or more with hot generator walls. With the exception of replacing one cracked brick in the MHD channel no repairs were required in the high temperature loop components for the duration of these tests. Uniform Faraday and Hall voltage profiles were obtained and the Faraday open circuit voltage varied from 90 to 100 percent of the ideal uBh. The magnitudes of the measured parameters are: Faraday open circuit voltage approximately 70 V, total Faraday current approximately 20 A, Hall voltage approximately 250 V, power output approximately 300 W, and power density .036 W/cu cm
    corecore