616 research outputs found

    Current treatment approaches in CML.

    Get PDF
    Take home messages Five tyrosine kinase inhibitors are available, the treatment strategy is still challenging. Baseline risk, comorbidities, and patient and physician expectations play a pivotal role. Treatment-free remission is a new opportunity

    Systemic mastocytosis: Molecular landscape and implications for treatment

    Get PDF
    Over the past decade, we have witnessed significant advances in the molecular characterization of systemic mastocytosis (SM). This has provided important information for a better understanding of the pathogenesis of the disease but has also practically impacted the way we diagnose and manage it. Advances in molecular testing have run in parallel with advances in therapeutic targeting of constitutive active KIT, the major driver of the disease. Therefore, assessing the molecular landscape in each SM patient is essential for diagnosis, prognosis, treatment, and therapeutic efficacy monitoring. This is facilitated by the routine availability of novel technologies like digital PCR and NGS. This review aims to summarize the pathogenesis of the disease, discuss the value of molecular diagnostic testing and how it should be performed, and provide an overview of present and future therapeutic concepts based on fine molecular characterization of SM patients

    HumanMycobiomeScan: A new bioinformatics tool for the characterization of the fungal fraction in metagenomic samples

    Get PDF
    Background: Modern metagenomic analysis of complex microbial communities produces large amounts of sequence data containing information on the microbiome in terms of bacterial, archaeal, viral and eukaryotic composition. The bioinformatics tools available are mainly devoted to profiling the bacterial and viral fractions and only a few software packages consider fungi. As the human fungal microbiome (human mycobiome) can play an important role in the onset and progression of diseases, a comprehensive description of host-microbiota interactions cannot ignore this component. Results: HumanMycobiomeScan is a bioinformatics tool for the taxonomic profiling of the mycobiome directly from raw data of next-generation sequencing. The tool uses hierarchical databases of fungi in order to unambiguously assign reads to fungal species more accurately and > 10,000 times faster than other comparable approaches. HumanMycobiomeScan was validated using in silico generated synthetic communities and then applied to metagenomic data, to characterize the intestinal fungal components in subjects adhering to different subsistence strategies. Conclusions: Although blind to unknown species, HumanMycobiomeScan allows the characterization of the fungal fraction of complex microbial ecosystems with good performance in terms of sample denoising from reads belonging to other microorganisms. HumanMycobiomeScan is most appropriate for well-studied microbiomes, for which most of the fungal species have been fully sequenced. This released version is functionally implemented to work with human-associated microbiota samples. In combination with other microbial profiling tools, HumanMycobiomeScan is a frugal and efficient tool for comprehensive characterization of microbial ecosystems through shotgun metagenomics sequencing

    Targeting leukemic stem cells in chronic myeloid leukemia: Is it worth the effort?

    Get PDF
    Chronic myeloid leukemia (CML) is a classical example of stem cell cancer since it arises in a multipotent hematopoietic stem cell upon the acquisition of the t(9;22) chromosomal transloca-tion, that converts it into a leukemic stem cell (LSC). The resulting BCR‐ABL1 fusion gene encodes a deregulated tyrosine kinase that is recognized as the disease driver. Therapy with tyrosine kinase inhibitors (TKIs) eliminates progenitor and more differentiated cells but fails to eradicate quiescent LSCs. Thus, although many patients obtain excellent responses and a proportion of them can even attempt treatment discontinuation (treatment free remission [TFR]) after some years of therapy, LSCs persist, and represent a potentially dangerous reservoir feeding relapse and hampering TFR. Over the past two decades, intensive efforts have been devoted to the characterization of CML LSCs and to the dissection of the cell‐intrinsic and ‐extrinsic mechanisms sustaining their persistence, in an attempt to find druggable targets enabling LSC eradication. Here we provide an overview and an update on these mechanisms, focusing in particular on the most recent acquisitions. Moreover, we provide a critical appraisal of the clinical relevance and feasibility of LSC targeting in CML

    Nilotinib: a novel encouraging therapeutic option for chronic myeloid leukemia patients with imatinib resistance or intolerance

    Get PDF
    Although high rates of complete hematologic and cytogenetic remission have been observed in patients with chronic phase chronic myeloid leukemia (CML) treated with imatinib, a short duration of response with eventual emergence of imatinib resistance has also been reported in a subset of CML patients. The most frequent clinically relevant mechanisms that change imatinib sensitivity in BCR-ABL-transformed cells are mutations within the Abl kinase domain, affecting several of its properties. Crystal structure analysis of the Abl-imatinib complex has proven helpful in identifying potential critical residues that hinder interactions of imatinib with mutated Abl. This has led to the development of a second generation of targeted therapies such as nilotinib and dasatinib, already in phase II clinical trials or SKI-606 and MK-0457 in phase I trials. In this review, we discuss the activity of nilotinib, developed by Novartis using a rational drug design strategy in which imatinib served as the lead compound. Preliminary studies demonstrated that nilotinib has more efficacy than imatinib in inhibiting proliferation of BCR-ABL-dependent cells, a relatively safety profile and clinical efficacy in all phases of CML

    Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context

    Get PDF
    The modern Paleolithic diet (MPD), featured by the consumption of vegetables, fruit, nuts, seeds, eggs, fish and lean meat, while excluding grains, dairy products, salt and refined sugar, has gained substantial public attention in recent years because of its potential multiple health benefits. However, to date little is known about the actual impact of this dietary pattern on the gut microbiome (GM) and its implications for human health. In the current scenario where Western diets, low in fiber while rich in industrialized and processed foods, are considered one of the leading causes of maladaptive GM changes along human evolution, likely contributing to the increasing incidence of chronic non-communicable diseases, we hypothesize that the MPD could modulate the Western GM towards a more “ancestral” configuration. In an attempt to shed light on this, here we profiled the GM structure of urban Italian subjects adhering to the MPD, and compared data with other urban Italians following a Mediterranean Diet (MD), as well as worldwide traditional hunter-gatherer populations from previous publications. Notwithstanding a strong geography effect on the GM structure, our results show an unexpectedly high degree of biodiversity in MPD subjects, which well approximates that of traditional populations. The GM of MPD individuals also shows some peculiarities, including a high relative abundance of bile-tolerant and fat-loving microorganisms. The consumption of plant-based foods–albeit with the exclusion of grains and pulses–along with the minimization of the intake of processed foods, both hallmarks of the MPD, could therefore contribute to partially rewild the GM but caution should be taken in adhering to this dietary pattern in the long term

    Gut microbiome structure and adrenocortical activity in dogs with aggressive and phobic behavioral disorders

    Get PDF
    Accompanying human beings since the Paleolithic period, dogs has been recently regarded as a reliable model for the study of the gut microbiome connections with health and disease. In order to provide some glimpses on the connections between the gut microbiome layout and host behavior, we profiled the phylogenetic composition and structure of the canine gut microbiome of dogs with aggressive (n = 11), phobic (n = 13) and normal behavior (n = 18). Hormones\u2019 determination was made through Radio Immuno-Assay (RIA), and next generation sequencing of the V3\u2013V4 gene region of the bacterial 16S rRNA was employed to determine gut microbiome composition. Our results did not evidence any significant differences of hormonal levels between the three groups. According to our findings, aggressive behavioral disorder was found to be characterized by a peculiar gut microbiome structure, with high biodiversity and enrichment in generally subdominant bacterial genera (i.e. Catenibacterium and Megamonas). On the other hand, phobic dogs were enriched in Lactobacillus, a bacterial genus with known probiotic and psychobiotic properties. Although further studies are needed to validate our findings, our work supports the intriguing opportunity that different behavioral phenotypes in dogs may be associated with peculiar gut microbiome layouts, suggesting possible connections between the gut microbiome and the central nervous system and indicating the possible adoption of probiotic interventions aimed at restoring a balanced host-symbiont interplay for mitigating behavioral disorders

    BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase

    Get PDF
    BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.T P Hughes, G Saglio, A Quintás-Cardama, M J Mauro, D-W Kim, J H Lipton6, M B Bradley-Garelik, J Ukropec and A Hochhau
    corecore