26,318 research outputs found

    Inclusive Breakup Theory of Three-Body Halos

    Full text link
    We present a recently developed theory for the inclusive breakup of three-fragment projectiles within a four-body spectator model \cite{CarPLB2017}, for the treatment of the elastic and inclusive non-elastic break up reactions involving weakly bound three-cluster nuclei in A(a,b)XA\,(a,b)\,X / a=x1+x2+ba = x_1 + x_2 + b collisions. The four-body theory is an extension of the three-body approaches developed in the 80's by Ichimura, Autern and Vincent (IAV) \cite{IAV1985}, Udagawa and Tamura (UT) \cite{UT1981} and Hussein and McVoy (HM) \cite{HM1985}. We expect that experimentalists shall be encouraged to search for more information about the x1+x2x_{1} + x_{2} system in the elastic breakup cross section and that also further developments and extensions of the surrogate method will be pursued, based on the inclusive non-elastic breakup part of the bb spectrum.Comment: 8 pages, 3 figures, Contribution to the Proceedings of Fusion17: "International Conference on Heavy-Ion Collisions at Near-Barrier Energies", 20-24 February 2017 Hobart, Tasmania, Australi

    Active Galactic Nuclei with Starbursts: Sources for Ultra High Energy Cosmic Rays

    Get PDF
    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst in the radio galaxy Cen A pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across most of the sky.Comment: 4 pages, 1 figure, proceedings of "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelber

    Averaging out magnetic forces with fast rf-sweeps in an optical trap for metastable chromium atoms

    Full text link
    We introduce a novel type of time-averaged trap, in which the internal state of the atoms is rapidly modulated to modify magnetic trapping potentials. In our experiment, fast radiofrequency (rf) linear sweeps flip the spin of atoms at a fast rate, which averages out magnetic forces. We use this procedure to optimize the accumulation of metastable chomium atoms into an optical dipole trap from a magneto-optical trap. The potential experienced by the metastable atoms is identical to the bare optical dipole potential, so that this procedure allows for trapping all magnetic sublevels, hence increasing by up to 80 percent the final number of accumulated atoms.Comment: 4 pages, 4 figure
    corecore