36,993 research outputs found

    Using gamma regression for photometric redshifts of survey galaxies

    Get PDF
    Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of ~1%, that can be achieved in a matter of seconds on large datasets of size ~1,000,000. To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.Comment: Refereed Proceeding of "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th November 2014, to be published in the Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodice, 6 pages, and 1 figur

    Detectability of the First Cosmic Explosions

    Full text link
    We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signaling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲8\lesssim 8 per cent of total allocation time of the James Webb Space Telescope mission can provide us up to ∼9−15\sim 9-15 detectable PISNe per year.Comment: 9 pages, 8 figures. Minor corrections added to match published versio

    Nuclear multifragmentation within the framework of different statistical ensembles

    Full text link
    The sensitivity of the Statistical Multifragmentation Model to the underlying statistical assumptions is investigated. We concentrate on its micro-canonical, canonical, and isobaric formulations. As far as average values are concerned, our results reveal that all the ensembles make very similar predictions, as long as the relevant macroscopic variables (such as temperature, excitation energy and breakup volume) are the same in all statistical ensembles. It also turns out that the multiplicity dependence of the breakup volume in the micro-canonical version of the model mimics a system at (approximately) constant pressure, at least in the plateau region of the caloric curve. However, in contrast to average values, our results suggest that the distributions of physical observables are quite sensitive to the statistical assumptions. This finding may help deciding which hypothesis corresponds to the best picture for the freeze-out stageComment: 20 pages, 7 figure

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000

    Thermal Effects on Photon-Induced Quantum Transport

    Full text link
    We theoretically investigate laser induced quantum transport in a two-level quantum dot attached to electric contacts. Our approach, based on nonequilibrium Green function technique, allows to include thermal effects on the photon-induced quantum transport and excitonic coherent dynamics. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupations as a function of time. The characteristic coherent Rabi oscillations are found in both occupations and photocurrent, with two distinct sources of decoherence: incoherent tunneling and thermal fluctuations. In particular, for increasing temperature the dot becomes more thermally occupied which shrinks the amplitude of the Rabi oscillations, due to Pauli blockade. Finally, due to the interplay between photon and thermal induced electron populations, the photocurrent can switch sign as time evolves and its stationary value can be maximized by tunning the laser intensity.Comment: 5 pages, 4 figure
    • …
    corecore