13 research outputs found

    BUSCANDO ENTENDER A PREPARAÇÃO DESPORTIVA A LONGO PRAZO A PARTIR DAS CAPACIDADES FÍSICAS EM CRIANÇAS

    Get PDF
    Atualmente no âmbito do Treinamento Desportivo, uma das preocupações direciona-se ao entendimento do processo de preparação a longo prazo para que se possa formar indivíduos capazes de realizar ou mesmo suportar as exigências que determinado desporto solicita. Nesse sentido o entendimento de que o processo de organização envolve diversos aspectos em diferentes âmbitos, pretende-se aqui discutir três aspectos: I) conhecimento das diferentes indicações de estruturação desportiva, II) entendimento das particularidades do organismo nesta faixa etária e, por fim, III) direcionamento do treinamento das diferentes capacidades físicas

    Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods

    No full text
    The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector\u2019s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters

    Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators.

    No full text
    Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19

    Unlike Chloroquine, Mefloquine Inhibits SARS-CoV-2 Infection in Physiologically Relevant Cells

    No full text
    Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus–host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine’s optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC(50) of 1.2 µM and EC(90) of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine’s pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine’s chemical structure could represent an orally available host-acting agent to inhibit virus entry

    Acetylcysteine for Prevention of Renal Outcomes in Patients Undergoing Coronary and Peripheral Vascular Angiography Main Results From the Randomized Acetylcysteine for Contrast-Induced Nephropathy Trial (ACT)

    No full text
    Background-It remains uncertain whether acetylcysteine prevents contrast-induced acute kidney injury. Methods and Results-We randomly assigned 2308 patients undergoing an intravascular angiographic procedure with at least 1 risk factor for contrast-induced acute kidney injury (age >70 years, renal failure, diabetes mellitus, heart failure, or hypotension) to acetylcysteine 1200 mg or placebo. The study drugs were administered orally twice daily for 2 doses before and 2 doses after the procedure. The allocation was concealed (central Web-based randomization). All analysis followed the intention-to-treat principle. The incidence of contrast-induced acute kidney injury (primary end point) was 12.7% in the acetylcysteine group and 12.7% in the control group (relative risk, 1.00; 95% confidence interval, 0.81 to 1.25; P = 0.97). A combined end point of mortality or need for dialysis at 30 days was also similar in both groups (2.2% and 2.3%, respectively; hazard ratio, 0.97; 95% confidence interval, 0.56 to 1.69; P = 0.92). Consistent effects were observed in all subgroups analyzed, including those with renal impairment. Conclusions-In this large randomized trial, we found that acetylcysteine does not reduce the risk of contrast-induced acute kidney injury or other clinically relevant outcomes in at-risk patients undergoing coronary and peripheral vascular angiography.Ministério da Saúde do BrasilBrazilian Ministry of Healt
    corecore