14 research outputs found

    Flow-process controls on grain type distribution in an experimental turbidity current deposit: Implications for detrital signal preservation and microplastic distribution in submarine fans

    Get PDF
    Deep-water depositional systems are the ultimate sink for vast quantities of terrigenous sediment, organic carbon and anthropogenic pollutants, forming valuable archives of environmental change. Our understanding of the distribution of these particles and the preservation of environmental signals, in deep-water systems is limited due to the inaccessibility of modern systems, and the incomplete nature of ancient systems. Here, the deposit of a physically modelled turbidity current was sampled (n = 49) to determine how grain size and grain type vary spatially. The turbidity current had a sediment concentration of 17%. The sediment consisted of, by weight, 65% quartz sand (2.65 g/cm3), 17.5% silt (2.65 g/cm3), 7.5% clay (2.60 g/cm3) and 5% each of sand-grade garnet (3.90 g/cm3) and microplastic fragments (1.50 g/cm3). The grain size and composition of each sample was determined using laser diffraction and density separation, respectively. The results show that: (a) bulk grain size coarsened axially downstream on the basin floor challenging the notion that basin floor deposits fine radially from an apex upon becoming unconfined; (b) no sample composition matched the input composition of the flow, indicating that allogenic signals can be autogenically shredded and spatially variable in sediment gravity flow deposits; and (c) microplastic fragments were concentrated in levee and lateral basin floor fringe positions; however, microplastic concentrations in these positions were lower than input, suggesting microplastics bypassed the sampled positions. These findings have implications for: (a) the development of ‘finger-like’ geometries and facies distributions observed in modern and ancient systems; (b) interpreting environmental signals in the stratigraphic record; and (c) predicting the distribution of microplastics on the sea floor. © 2021 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologist

    The Eocene-Oligocene climate transition in the Alpine foreland basin: Paleoenvironmental change recorded in submarine fans

    Get PDF
    The Eocene-Oligocene transition (EOT) was a period of considerable environmental change, signifying the transition from Paleocene greenhouse to Oligocene icehouse conditions. Preservation of the sedimentary signal of such an environmental change is most likely in net-depositional environments, such as submarine fans, which are the terminal parts of sedimentary systems. Here, using sedimentary and stable isotope data from the Alpine foreland basin, we assess whether this major climatic transition influenced the stratigraphic evolution of submarine fans. Results indicate that fine-grained deposition in deep-water environments corresponds to positive δ13C excursions and eustatic highstands, while coarse-grained deposition corresponds to negative δ13C excursions and eustatic lowstands during the earliest Oligocene. While alternative explanations cannot be ruled out on the basis of this dataset alone, our results suggest that eustatic fluctuations across the EOT and into the early Oligocene influenced sediment supply to deep-water environments

    Flow-process controls on grain type distribution in an experimental turbidity current deposit:Implications for detrital signal preservation and microplastic distribution in submarine fans

    No full text
    Abstract Deep‐water depositional systems are the ultimate sink for vast quantities of terrigenous sediment, organic carbon and anthropogenic pollutants, forming valuable archives of environmental change. Our understanding of the distribution of these particles and the preservation of environmental signals, in deep‐water systems is limited due to the inaccessibility of modern systems, and the incomplete nature of ancient systems. Here, the deposit of a physically modelled turbidity current was sampled (n = 49) to determine how grain size and grain type vary spatially. The turbidity current had a sediment concentration of 17%. The sediment consisted of, by weight, 65% quartz sand (2.65 g/cm3), 17.5% silt (2.65 g/cm3), 7.5% clay (2.60 g/cm3) and 5% each of sand‐grade garnet (3.90 g/cm3) and microplastic fragments (1.50 g/cm3). The grain size and composition of each sample was determined using laser diffraction and density separation, respectively. The results show that: (a) bulk grain size coarsened axially downstream on the basin floor challenging the notion that basin floor deposits fine radially from an apex upon becoming unconfined; (b) no sample composition matched the input composition of the flow, indicating that allogenic signals can be autogenically shredded and spatially variable in sediment gravity flow deposits; and (c) microplastic fragments were concentrated in levee and lateral basin floor fringe positions; however, microplastic concentrations in these positions were lower than input, suggesting microplastics bypassed the sampled positions. These findings have implications for: (a) the development of ‘finger‐like’ geometries and facies distributions observed in modern and ancient systems; (b) interpreting environmental signals in the stratigraphic record; and (c) predicting the distribution of microplastics on the sea floor

    Challenging the highstand-dormant paradigm for land-detached submarine canyons

    Get PDF
    Sediment, nutrients, organic carbon and pollutants are funnelled down submarine canyons from continental shelves by sediment-laden flows called turbidity currents, which dominate particulate transfer to the deep sea. Post-glacial sea-level rise disconnected more than three quarters of the > 9000 submarine canyons worldwide from their former river or long-shore drift sediment inputs. Existing models therefore assume that land-detached submarine canyons are dormant in the present-day; however, monitoring has focused on land-attached canyons and this paradigm remains untested. Here we present the most detailed field measurements yet of turbidity currents within a land-detached submarine canyon, documenting a remarkably similar frequency (6 yr− 1) and speed (up to 5–8 ms− 1) to those in large land-attached submarine canyons. Major triggers such as storms or earthquakes are not required; instead, seasonal variations in cross-shelf sediment transport explain temporal-clustering of flows, and why the storm season is surprisingly absent of turbidity currents. As > 1000 other canyons have a similar configuration, we propose that contemporary deep-sea particulate transport via such land detached canyons may have been dramatically under-estimated
    corecore