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ABSTRACT

Deep-water sedimentary systems are the products of, and may record, the
interaction of a range of external and internal factors. External factors, i.e., climate, eustasy,
and tectonics, act to control sediment supply and accommodation space, while internal
factors, such as flow dynamics and bedform deposition, act to control sediment
distribution and character. The expression of the interplay between external and internal
forces acting on deep-water sedimentary systems is archived in the stratigraphic record,
however, deconvolving these in time and space remains challenging.

This study aims to enhance our understanding of the influence of external and
internal factors on deep-water systems through a multi-scalar and multi-method approach.
Outcrop data from the Eocene-Oligocene Alpine foreland and Cretaceous Greater
Caucasus are compared with subsurface data from the Paleocene-Eocene North Sea
Central Graben, with the results of these studies compared to simplified physical models of
the topographic configurations of these basins.

Key insights derived from this study include: 1) onlap patterns in deep-water
systems are controlled by a predictable interplay between external and internal factors, with
‘external’ onlap trends produced by progradation which is partially masked by ‘internal’
onlap trends produced by the character and evolution of the flows in space and time; 2) the
isotopic record of deep-water systems can be used to assess the dominant external control
on deposition within a basin and Earth’s surface conditions during deposition; 3) deep-
water deposition in the Alpine foreland was enhanced by increased aridity and lowered
eustatic sea-levels associated with the Eocene — Oligocene climate transition and hinterland
tectonism; 4) enhanced burial of organic carbon in deep-water systems during greenhouse-
icehouse transitions may provide a positive feedback for cooling during these transitions; 5)
far afield tectonic perturbations are recorded within the stratigraphy of deep-water basins,
and can be used to reconstruct the timing of tectonic events; 6) deposition in deep-water
systems affected by tectonic perturbations may initially be characterised by large-scale
mass-transport, with progradation of submarine fans affected by the topography of this
early mass-transport-dominated period; 7) deep-water systems characterised by
contemporaneous carbonate and siliciclastic deposition have facies, facies associations and
stacking patterns that differ from purely siliciclastic systems; 8) the orientation of basin
floor topography, with respect to the sediment delivery system, exerts a fundamental
control on the distribution and geometry of turbidity current deposits, and as a result

controls the stratigraphic record of confined deep-water systems.
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CHAPTER I1:Rationale

Deep-water sedimentary systems form the largest sediment accumulations on Earth
(e.g Curray and Moore, 1971; Clift et al. 2001). Understanding these systems is important
because they are long-term sinks of climate-modulating organic carbon (e.g. Galy et al.
2007; Cartapanis et al. 2010), preferentially store anthropogenic pollutants (e.g. Kane and
Clare, 2019), are reservoirs of economically-valuable hydrocarbons (e.g. Weimer and Link,
1991; Beaubouef et al. 2000), are important sites of carbon storage (e.g. Marshall et al.
2000), and form archives of events that affect the Earth’s geosphere (e.g. Romans et al.
2016; Hessler and Fildani, 2019). Deep-water sedimentary systems are controlled by
external and internal factors. External factors, such as eustasy, climate and tectonism, are
external to the deep-water sedimentary system, and have been shown to control both
ancient (e.g. Castlelltort et al. 2017; Sharman et al. 2017) and modern (e.g. Weber et al.
1997; Ducassou et al. 2009) deep-water systems. Internal factors, such as depositional
topography, act to control the distribution and character of sediment in deep-water systems
(e.g. Kneller, 1995; Sweet et al. 2019). Understanding the combined impacts of external and
internal controls on deep-water basins and their stratigraphic record is consequently
important for both palacoclimatic and palacogeographical reconstructions (e.g. Hessler and
Fildani, 2019; Pickering et al. 2020). This study therefore aims to: 1) investigate how
external factors affect the sedimentological and stratigraphic record of deep-water
sedimentary systems, 2) investigate how internal factors, particularly basin topography and
flow processes, affect deep-water sedimentary systems, and 3) investigate how the interplay
between external and internal factors is recorded within the stratigraphic record of deep-

water sedimentary systems.

These aims will be investigated through a series of case-studies, each of which
addressing particular aspects of the overarching aims. The first case-study seeks to evaluate
how basinal topography affects flow processes and deposits at outcrop, and how this may
affect the stratigraphic record of sediment supply changes. The second case-study aims to
use geochemical and outcrop data to resolve the external controls on sediment delivery to
deep-marine basins. The third and fourth case-studies aim to assess how tectonic activity
influences the stratigraphic evolution of deep-marine basins using subsurface and outcrop
data. These case-studies also seek to evaluate the effect of basinal and depositional

topography on the stratigraphic evolution of deep-marine basins. The final case study aims
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to investigate the influence of confining topography orientation on turbidity current

processes and deposit geometries using experimental models.

An additional rationale for this project lies in its approach, with existing
investigations of deep-water sedimentary systems either relying on the incomplete record of
their exhumed remains (e.g. Grundvag et al. 2014; Prélat et al. 2009), relatively low-
resolution seismic-data (e.g. Jackson et al. 2008; Deptuck et al. 2008), physical models that
are often difficult to scale to natural conditions (e.g. Kneller, 1995; Amy et al. 2004,
Hamilton et al. 2015) or relatively few direct measurements (e.g. Sumner et al. 2013; Clarke,
2016; Azpiroz-Zabala et al. 2017b). The wide spatio-temporal scope of these individual
methods often renders their findings difficult to compare across scales, with phenomena
identified through each of these methods rarely linked together within one study (e.g.
Khneller, 1995; Amy et al. 2004; Bakke et al. 2014, Hage et al. 2018). This study therefore
seeks to address this by incorporating these normally isolated methods into one integrated
study, with the rationale being that common phenomena seen across separate methods,

scales and localities are more likely to be pervasive in deep-water sedimentary systems.

Figure 1.1: Schematic diagram of the externa
and internal controls studied within this thesis

(modified from Ferguson et al. 2020).

1.1 How does topography control the sedimentology and stratigraphic record of a
confined deep-water basin margin?

Basins that receive sediment-gravity-flows which are partially or completely
confined by the margins of the basin are described as confined-deep-water basins (e.g.
Gorsline and Emery, 1959; Lomas and Joseph, 2004). Confined deep-water basins are
formed in a variety of different tectonic settings, such as fold-thrust belts (e.g. Morley and
Leong, 2008; Vinnels et al. 2010) and rifted basins (e.g. Smith, 1995; Cullen et al. 2019), and

21



by a variety of different processes, such as salt diapirism (e.g. Oluboyo et al. 2014;
Doughty-Jones et al. 2019) and mass-transport (Armitage et al. 2009; Alves, 2010). Flows
that enter these basins deposit sediment which pinches-out and progressively onlaps the
slope or basin margin (e.g. McCaffrey and Kneller, 2001; Gardiner, 2005), creating an onlap

pattern as the basin fills.

Previous work has tended to characterize onlap in a binary fashion based on two
end-member flow types (McCaffrey and Kneller, 2001; Pickering and Hilton, 1998; Smith
and Joseph, 2004). Sediment gravity flows, however, encompass a wide variety of different
flow types (e.g. Middleton and Hampton, 1973; Talling et al. 2012) and resultantly a wide
variety of different onlap styles (e.g. Gardiner, 2006; Bakke et al. 2013). It is important to
understand how the deposits of these different flow types onlap a slope because the onlap
patterns they generate can be used as indicators of external factors affecting deep-water
sedimentary systems, such as varying subsidence or sediment supply rates (e.g. Sylvester et
al. 2015). If internal processes, such as flow type, influence onlap patterns more than is
appreciated then onlap-based interpretations of these external processes may need to be
reappraised. The chapter therefore seeks to understand: 1) how the basin-internal
influences of topography and sediment-gravity-flow type affect onlap patterns, 2) if this
influence is predictable through time, and 3) how onlap patterns may record the interplay
between internal (autogenic) and external (allogenic) factors affecting deep-water

deposition.

1.2 Can you resolve the external controls on a deep-water sedimentary system?

The three main external factors affecting deep-water sedimentary systems are
eustatic sea-level, tectonism, and climate (e.g. Allen, 1997; Cantuneanu, 2020). It is often
difficult, however, to disentangle the relative impacts of these processes on the
stratigraphic record of a deep-water basin (e.g. Pickering and Bayliss, 2009; Semme et al.
20092; Romans et al. 2016). The ratio between the stable isotopes of carbon "*C and C
(8"°C), ate sensitive to climate and sea-level, and can be measured from hemipelagic deep-
water successions (e.g. Jenkyns, 1996; Mitchell et al. 1996; Saltzman and Thomas, 2012).
The 8"C record of these successions therefore provides a way to disentangle the effects of
sea-level, climate and tectonism on deep-marine deposition, and has previously been
utilised successfully to decipher controls on deep-marine deposition in the exhumed
Pyrenean foreland (Castelltort et al. 2017). Application of this method to analogous basins

has so far not been performed, and resultantly the exportability of this method is uncertain.
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The Gres d’Annot of the Alpine foreland basin is analogous to the Pyrenean strata
studied by Castelltort et al. (2017), representing a deep-marine succession that displays
periods of enhanced and decreased deposition attributed to sea-level, climate and tectonism
(Callec et al. 2004; Puigdefabregas et al. 2004; Euzen et al. 2004). The relative impacts of
these processes, however, has not been tested. Understanding the relative influence of
these controls could provide insights into 1) Corsica-Sardinian tectonism and foreland
basin sedimentation, and 2) the relative impact of tectonically-modulated sea-level,
generated by subsidence in front of the orogenic belt, and eustatic sea-level, on foreland

basin sedimentation.

Biostratigraphic data also indicates that the Gres d’Annot was deposited during the
Eocene-Oligocene transition (EOT) (Du Fornel et al. 2004; Euzen et al. 2004). The EOT
signifies the transition from Paleogene greenhouse to Oligocene-Recent icehouse
conditions, and has been well-constrained globally (e.g. Prothero and Berggren, 2014).
Most EOT studies tend to focus on quantifying temperature (e.g. Eldrett et al. 2009; Liu et
al. 2009) or sea-level (Katz et al. 2008; Miller et al. 2008) changes, with few studies
assessing how the EOT affected marine sedimentary systems (e.g. Schlanger and Premoli
Silva, 19806), and how this in turn may have modulated the EOT. The primary research
questions addressed in this chapter are therefore: 1) can the 8"°C record of a deep-marine
system resolve the external factors affecting deposition in that system?, 2) is the period of
major global climatic change associated with the Eocene-Oligocene transition recorded
within the sedimentological and stratigraphic record of deep-water basins? and, 3) could
the (internal) depositional response have had a feedback effect on the external event that

caused it?

1.3 What is the response of a deep-water sedimentary system to tectonic activity?

Tectonic activity, such as uplift (e.g. Métivier et al. 1999; Semme et al. 2019) or
earthquakes (Gorsline et al. 2000; Noda et al. 2008), has been shown to affect deep-water
sedimentary systems, and is often manifested by mass-transport (e.g. Masson et al. 2000;
Wu et al. 2019) and/or submarine fan progradation (e.g. Clift et al. 2001; McNeill et al.
2017; Pickering et al. 2020). These studies, however, are typically limited by incomplete
exposure or seismic coverage of ancient systems, a lack of subsurface lithology data, or
accurate constraints on tectonic event timing or cause. The Paleocene interval of the

Central North Sea basin represents a unique setting in which these limitations are partially
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mitigated against by extensive subsurface data and well-constrained tectono-stratigraphic

chronology (e.g. Den Hartog Jager et al. 1993; Mudge et al. 2015).

Previous work has shown that tectonism caused by impingement of the proto-
Icelandic mantle plume and the opening of the North Atlantic during the early Paleocene
affected deep-water systems in the North Sea (e.g. White and Lovell, 1997; Mudge and
Jones, 2004). These studies, however, provide little information on the deep-water
depositional processes recording the transition to a new tectonic regime, and how this
evolves spatially and temporally as the sedimentary system adjusts to its new regime. This
knowledge gap has prevented application of this well-constrained interval to analogous
exhumed or subsurface basins with less data availability. Stratigraphic predictions and
tectonic reconstructions of these pootly-constrained basins consequently have the potential
to be greatly improved by filling this gap, with case-studies of well-constrained analogues
providing a more accurate basis for interpretation in these pootly-constrained basins. The
primary research questions of the chapter are therefore: 1) what is the sedimentological and
stratigraphic record of tectonic activity in a deep-water basin? And, 2) how does the

depositional response to tectonism evolve through time?

1.4 What is the stratigraphic evolution of a mixed deep-water system on an unstable
margin?

Mixed siliciclastic-carbonate deep-water systems (mixed-systems) are those in
which both siliciclastic and carbonate sediment gravity flows are deposited
contemporaneously in the same basin (e.g. Mount, 1984; Moscardelli et al. 2019). These
systems are less-well studied than their siliciclastic counterparts, therefore little is known
about the applicability of siliciclastic depositional processes (e.g. Mulder and Alexander,
2001; Talling et al. 2012), facies associations (e.g. Mutti, 1992; Spychala et al. 2017) and
stacking patterns (e.g. Deptuck et al. 2008; Prélat et al. 2009) to these systems. This chapter
seeks to address this by investigating a Cretaceous mixed-system deposited in the Buduq
Trough of the Greater Caucasus, Azerbaijan. The particular research questions are: 1) what
are the depositional processes operating in mixed systems?, 2) what are the facies
associations and depositional elements of mixed systems?, and 3) how do

contemporaneous siliciclastic and carbonate submarine fans interact?

The Buduq Trough at this time was also highly unstable due to far-field tectonic

activity, and is consequently characterised by extensive mass-transport deposition (Bochud,
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2011). The effect of this tectonism on the sedimentological and stratigraphic evolution of
the deep-water Buduq Trough, however, has not been studied in detail. Mass-transport
topography has been also been shown to have affected deep-marine depositional patterns
in ancient systems in the subsurface (e.g. Alves, 2010; Ortiz-Karpf et al. 2015, 2016) and at
outcrop (e.g. Armitage et al. 2009; Fallgatter et al. 2017; Brooks et al. 2018). This chapter
therefore also aims to further investigate 1) the effect that mass-transport deposition may
have had on depositional patterns in the Buduq Trough, 2) how this may be resolved at
outcrop and in the subsurface, and 3) whether the depositional response to tectonic activity
changed through time. The rationale of this Chapter is therefore closely aligned with
Chapter 6.

1.5 What effect does topographic orientation have on confined turbidity currents?

The influence of confining topography orientation on deep-water sedimentation is
typically inferred from the deposits that sediment gravity flows leave behind, which are
generally incompletely revealed due to poor exposure (e.g. Feletti, 2002; Smith et al. 2004b)
or low seismic resolution (e.g. Gee et al. 2001; Bakke et al. 2013). Resultantly, there is little
data on the generic depositional patterns that may be expected with varying orientations of
confining topography. This knowledge gap is problematic because many palacogeographic
or structural reconstructions of deep-water basins are dependent on using the stratigraphic
record of the flows that entered them as proxies for the basin shape (e.g. Sinclair, 1994;
2000; Pinter et al. 2017). If the effect of topographic orientation on this record is unknown
then these reconstructions may be incorrect. This lack of knowledge will also affect how
researchers interpret the external controls on deep-water systems, as it is may be unknown
how the basin shape affected the transfer and preservation of the depositional signals from

external events.

Physical models of turbidity currents interacting with topography at varying
orientations have been used to address this knowledge gap, however they are usually
performed under experimental conditions that limit scaling to natural conditions, such as
using flows with unrealistic sediment compositions or flume tanks with non-erodable
substrates (e.g. Alexander and Morris, 2004; Abhari et al. 2018). The research questions
posed are therefore: 1) what is the effect of topographic orientation on scalable turbidity
current velocities, erosion, and deposition? 2) can physical models explain features seen in
exhumed or subsurface confined deep-water systems? and 3) how does basinal topography

affect the transfer of external signals in deep-water systems?
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Chapter 2:Deep-water sedimentary systems

CHAPTER 2:Deep-water sedimentary systems

2.1 Introduction

Understanding of the depositional processes operating in the deep-sea began with
the bathymetric identification of submarine channels at the mouth of the Hudson River,
Western North America (Dana, 1863) and the Rhone River in Lake Geneva, Switzerland
(Forel, 1885). It was suggested by Forel (1885) that the Lake Geneva channel was carved by
the subaqueous continuation of the Rhone River. As exploration and data coverage of the
deep-sea increased other examples of channels and canyons along continental margins were
identified (Spencer, 1903), such as the Congo Canyon (Fig. 2.1) (Buchanan, 1887; 1888)
and the Laurentian Canyon (Spencer, 1889), with Daly (1936) suggesting in ‘Origin of
Submarine “Canyons.” that these canyons were eroded by gravity-driven subaqueous flows of

suspended sediment, which he called ‘turbidity currents’.
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Figure 2.1: A) Sketch of the Congo Canyon from Buchanan (1888). B) Present-day
resolution of the Congo Canyon (Aspiroz-Zabala et al. 2017a).
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An understanding of how these turbidity currents may be preserved in the rock
record began with the interpretation of graded deposits on the seafloor (Bramelette and
Bradley, 1940) and within reservoirs (‘black blizzards’ of Bell (1942)) as being deposited by
turbulent flows. Ancient sand-rich and graded beds within otherwise fine-grained marine
sequences were then interpreted based on these observations and experimental models to
have been formed by turbulent flows moving sediment into deep-water (Kuenen and
Migliorini, 1950; Natland and Kuenen, 1951; Bouma, 1962, 1964; Harnes and Fahnestock,
1965). Damaged submarine infrastructure provided the first indirect measurements of these
flows in nature (e.g. Heezen and Ewing, 1952; Mulder et al, 1997), with direct
measurements of turbulent flows now recorded from various locations across the globe
(e.g. Sumner et al. 2013; Talling et al. 2013; Azpiroz-Zabala et al. 2017ab; Paull et al. 2018;
Clare et al. 2019; Maier et al. 2019). The exact nature and variety of these flows, and the
geomorphology they build, however, remains a topic of intense research (e.g. Talling et al.
2012; Howlett et al. 2019; Picot et al. 2019; Maier et al. 2019; McHargue et al. 2019;
Fonnesu et al. 2020; Heerema et al. 2020). The following sections will summarise what is
presently known about sediment gravity flow (SGF) processes, their deposits and the

geomorphic elements they produce.

2.2 Flow processes

Sediment is transported to deep-water (below storm wave-base) by sediment gravity
flows (SGFs) (Fig. 2.2) (Daly, 1936; Kuenen and Migliorini, 1950; Middleton and
Hampton, 1973; Lowe, 1982; Mulder and Alexander, 2001; Talling et al. 2012). SGFs form
due to the action of gravity on the density contrast between sediment-laden fluid and
ambient fluid (seawater or freshwater) (e.g. Middleton and Hampton, 1973; Lowe, 1979). A
spectrum of SGF types has been identified and differentiated based on their particle
support mechanism (Fig. 2.2), which Mulder and Alexander (2001) describe as being
controlled by some combination of matrix strength, buoyancy, pore pressure, grain-to-grain
interaction, turbulence and bed support. Two end-member flow types are commonly
differentiated: turbulent (Bouma, 1962; Kuenen and Migliorini, 1950; Garcia, 1994; Kneller
and Branney, 1995; Kneller and McCaffrey, 1999; Lamb et al. 2004; Eggenhuisen et al.
2017) or laminar (Hampton, 1972; Nardin et al. 1979; Sohn, 2000; Ilstad et al. 2004; Baas et
al. 2009; Inverson et al. 1997, 2010; Jackson, 2011), with transitional flows (e.g. Baas and
Best, 2002; Baas et al. 2009; Sumner et al. 2009) bridging the gap between these two end-
members (Fig. 2.2).
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Fignre 2.2: Variation in SGF type, structure, velocity and resultant deposit (Haughton et al.
2009).

Turbulent flows

SGFs, or regions of individual SGFs, can be described as turbulent when the
downward-directed force of gravitational settling competes with the upward-directed force
of turbulence, resulting in the partial or complete suspension of sediment (e.g. Middleton,
1967; Middleton and Hampton, 1973; Lowe, 1982; Middleton, 1993; Mulder and
Alexander, 2001; Baas et al. 2005; Talling et al. 2012). Turbulent sediment gravity flows
have a general structure comprising a head, body and tail (Fig. 2.3), as the head of the flow
interacts with and entrains the ambient fluid, the mean velocity and sediment concentration
is highest in the body of the flow and decreases toward the tail (e.g. Middleton, 1967;
Khneller and Buckee, 2000). Therefore, during the passage of an individual turbulent flow
over a fixed point, velocities will increase with the arrival of the head, will reach their
maximum during the passage of the flow body behind the head and will wane during the
passage of the body and tail (e.g. Kuenen and Migliorini, 1950; Middleton and Hampton,
1973; Kneller and Buckee, 2000). The velocity maximum marks the separation between a
lower ‘wall-region’, where turbulence is created by bottom shear, and upper et-region’,

where turbulence is created in the free shear zone and ambient fluid is entrained (Altinakar
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et al. 1996). Numerous intra-flow velocity and concentration variations are over-printed on
this more general pattern (e.g. Baas et al. 2005) (Fig. 2.3), with turbulent flows and their
structure remaining an active area of research (e.g. Luchi et al. 2018; Paull et al. 2018;
Eggenhuisen et al. 2019; Maier et al. 2019; Pohl et al, 2019a; Heerema et al. 2020). It has
been shown recently through direct measurements, for example, that naturally-occurring
turbulent sediment gravity flows may actually be fastest at the head of the flow within a

high-concentration fore-running basal layer (Aspiroz-Zabala et al. 2017).

In general, turbulent flows will continue to flow down-slope until they either
‘subside’ by a reduction in the density contrast between the flow and the ambient fluid
through ambient fluid entrainment and/or deposition of sediment from the flow (e.g.
Parker et al. 1986; Middleton, 1993; Mulder and Alexander, 2001; Talling et al. 2012), or
‘ignite’ through erosion and incorporation of sediment as they flow, allowing them to
maintain excess densities and run-out for longer distances (e.g. Parker et al. 1986;

Fukushima et al. 1985; Middleton, 1993; Heerema et al. 2020).
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Figure 2.3: Schematic diagram showing the key features of a turbulent flow from Baas et al. (2005). U =
downstream velocity, 1msU = root-mean-squared values of downstream wvelocity, C = suspended sediment
concentration, D50 = median grain size.

Turbulent flows can be sub-divided based on their sediment concentration into
low-density and high-density flows (e.g. Lowe, 1982; Kneller and Branney, 1995). Low-

density flows have lower sediment concentrations and are entirely supported by fluid
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turbulence (e.g. Baas et al. 2011). High-density flows have higher sediment concentrations,
which suppresses turbulence close to the bed (Lowe, 1982; Talling et al. 2005). High-
density flows are therefore supported by a combination of fluid turbulence and grain-to-

grain interaction (Mulder and Alexander, 2001).

Laminar flows

SGFs characterised by laminar flow conditions, often called debris flows, are those
in which turbulence is suppressed and sediment is supported by a matrix of high yield-
strength fluid and fine sediment (i.e. mud) (e.g. Vanoni, 1946; Hampton, 1972; Middleton
and Hampton, 1973; Nardin et al. 1979; Coussot and Meunier, 1996; Wang and Plate, 1996;
Sohn, 2000; Ilstad et al. 2004; Baas et al. 2009; Inverson et al. 1997, 2010). Laminar flow
conditions typically arise when electrostatic bonds between clay minerals cause the
suppression of turbulence, resulting in non-Newtonian flow (e.g. Wang and Larsen, 1994;
Coussot and Meunier, 1996). The high yield strength of this water-clay fluid phase (matrix)
supports the flow (e.g. Coussot and Meunier, 1996), compared with the dominantly fluidal
support of a turbulent flow and grain-grain support of a grain flow (Middleton and
Hampton, 1973), with the cohesive matrix of laminar flows preventing ambient fluid
entrainment and dilution (Mulder and Alexander, 2001). Laminar conditions may also arise
in cohesionless (i.e. mud-poor) flows if grain concentrations are high enough for grains to
interlock and give the flow frictional strength (Shanmugam and Moiola, 1995; Amy et al.
2005).

When the shear stress, or ‘driving gravity stress’ (Middleton and Hampton, 1973),
applied to the flow cannot overcome the yield or frictional strength of the flow then en-
masse deposition of the flow will occur (Lowe, 1982; Postma, 1986; Amy et al. 2005).
Debris flows may rheologically transform through dilution to form turbulent flows
(Hampton, 1972; Fallgatter et al. 2017), and vice versa (Haughton et al. 2003; Talling et al.
2007a; Hodgson et al. 2009; Fonnesu et al. 2018).

Transitional flows

Transitional flows are those in which sediment is transported through a continuum
of processes between fully turbulent and fully laminar (e.g. Wang and Plate, 1996; Baas and
Best, 2002; Sumner et al. 2009; Baas et al. 2009), and typically arises when fully turbulent

flows increase their relative concentration of mud as they flow down-dip (Fig. 2.4), either
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by deposition of coarse grains up-dip and/or erosion and entrainment of mud (e.g. Matr et

al., 2001; Haughton et al., 2003; Kane and Pontén, 2012).

Transitional flows are manifested by strong turbulence near the bed, and weak or
no turbulence within a laminar later immediately above the bed and in the upper parts of
the flow (Baas et al. 2009; Sumner et al. 2009), and can be sub-divided into low- and high-
density transitional flows (Baas and Best, 2002; Baas et al. 2002). Low-density transitional
flows (or ‘turbulence-enhanced transitional flows’) exhibit enhanced near-bed turbulence
and reduced turbulence in the upper region of the flow when compared with fully
turbulent low-density flows (Baas and Best, 2002; Baas et al. 2009) (Fig. 2.4). Cohesive
forces become more important as concentration increases, with a low-turbulence plug flow
layer developing in the upper region of the flow and expanding downwards with increasing
concentration, thus increasing the near-bed turbulence intensity (Baas et al. 2009). High-
density transitional flows (or ‘upper transitional plug flows’) are therefore characterised by a
thick plug flow region, and flow as a low-turbulence ‘rigid fluid mass’ over a shear layer
with reducing turbulent intensity (Baas and Best, 2002; Baas et al. 2009) (Fig. 2.4). As
transitional flows become increasingly concentrated in clay shear at the flow base becomes
increasingly unable to break the clay bonds, resulting in the development of fully laminar

flow conditions (Wang and Plate, 1996; Baas et al. 2009).

0.18 T T T T T T T

- ‘l
016 B Deposit type ] QLPF Quasiaminar plug flow
v QLPF . .-
=="UTPF ' Tr——
L o ——
014 | o -
1
012F -

Upper transitional plug flow

0.10 |
Lower transitional plug flow
0.08 Deposit type
I+11
0.06

Mud concentration @,

Turbulence-enhanced transitional flow

004 F

0.02 Turbulent flow

Flow velocity (m/s)

Figure 2.4: Experimental relationship between flow velocity, flow structure, mud concentration, and the resultan
deposit (from Baas et al. 2009; Sumner et al. 2009). Arrows show trajectory of flows that would deposit a linkea
turbidite-debrite (Summer et al. 2009).
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2.3 Flow deposits

Low-density turbidites

Low-density turbidites (LDTs) are deposited from low-concentration flows (<< 10
% sediment-volume) in which sediment within the flow was supported by fluid turbulence
throughout its height (Mulder and Alexander, 2001; Baas et al. 2011). Preferential settling
of larger grains within these flows results in a vertical density stratification profile (sensu
Bagnold, 1962), with coarser-grains at the base of the flow and finer-grains dispersed
homogenously throughout the flow (e.g. Garcia, 1994; Baas et al. 2005; Tiltston et al. 2015;
Eggenhuisen et al. 2019). This results in incremental layer-by-layer deposition as the flow
wanes, shear velocities decrease and progressively finer grains are deposited (Kneller and
Branney, 1995; Talling et al. 2005), forming a normally-graded LDT (‘Bouma Thb-¢’ of Fig
2.5A; 2.6). Low-density turbidites are characterised by tractional structures, such as ripples,
which are diagnostic of near-bed turbulence (Baas et al. 2011; Talling et al. 2012) (Fig. 2.5A;
2.6). Near-bead turbulence is also manifested in the form of flutes often present on LDT
bed bases (e.g. Kuenen, 1957), which record differential erosion during the passage of the
high-velocity flow head and body (e.g. Elliot, 2000), and are frequently used to indicate
paleoflow (e.g. Glennie, 1963; Kneller, 1991).

LDTs are typically thin (< 40 cm) (Ricci Lucchi, 1967; Talling, 2001) and
commonly observed in distal or marginal environments as flows become more dilute
during water entrainment and loss of sediment down-slope or away from the flow axis (e.g.
Walker, 1967, Mutti, 1977; Hiscott et al. 1997; Boulesteix et al. 20192). LDT's are also often
associated with channelised deposition, where the upper and finer portions of a flow spill
over confining channels (e.g. Mutti, 1977; Pirmez and Imran, 2003; Hansen et al. 2015;
Jobe et al. 2017; Eggenhisen et al. 2019), forming levees (e.g. Normark et al., 1983; Kane
and Hodgson, 2011). Sand content and LDT thickness will decrease distally away from the

channel and within the levee in this setting (Skene et al. 2002; Kane et al., 2007).
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High-density turbidites

High-density turbidites (HDTs) are the depositional products of flows with high
sediment concentrations (> ~10 % sediment-volume) and consequently high densities (e.g
Mulder and Alexander, 2001). When these flows lose their capacity for transport (e.g.
Hiscott et al. 1994), they rapidly deposit the entire grain size range of their sediment load,
causing the suppression of near-bed turbulence, which prevents the formation of tractional
bedforms (Baas et al. 2011; Talling et al. 2012). Grains in this turbulence-supressed lower
region are supported by grain-grain interaction and hindered settling (e.g. Bagnold et al.
1962; Mulder and Alexander, 1972), and therefore have a pootly-defined flow-deposit
boundary (Kneller and Branney, 1995). Sheared and truncated fluid-escape structures may
also be preserved within HDT's, indicating pore water escape from a loosely packed and
rapidly aggrading bed that was being sheared by the over-riding flow or still undergoing
downslope gravity-driven transport (e.g. Lowe, 1982, Kneller and Branney, 1995).

HDTs therefore tend to be relatively thick, pootly-sorted, ungraded and
structureless (Middleton and Hampton, 1973; Talling, 2012), with normal grading within
the upper divisions sometimes present when the flow has evolved from a highly-
concentrated lower region and less-concentrated upper/trailing region (Lowe, 1982;
Postma, 1986) (Fig. 2.5B; 2.7), which may be manifested by an abrupt grain-size break (e.g.
Talling et al. 2012; Stevenson et al. 2015) (Fig. 2.6). HDTs are difficult to distinguish from
sand-rich debrites due to their often structureless appearance and lack of architectural
constraint, which hinders identification of deposit pinchouts, causing some debate (e.g.

Shanmugam, 1996; Talling et al. 2003; Amy et al., 2005).

Internal structures can be preserved in HDTs through the formation of ‘traction
carpets’ (e.g. Dzulynsky and Sanders, 1962) (Fig. 2.5B), which result from grain-flow-like
deposition of highly-concentrated layers transported through shear by the overriding flow
(Lowe, 1982; Sohn, 1997). ‘Spaced stratification’ forms through progressive aggradation of
these layers, which may result in inverse grading (Hiscott and Middleton, 1980; Sohn,
1997). Internal erosion surfaces and scour fills may also be preserved within HDTs as
aggraded sediment is periodically scoured and filled by the surges within the overlying flow
(e.g. Lowe, 1982).
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Chapter 2:Deep-water sedimentary systems

HDTSs are more likely to be deposited in proximal areas where high-energy flows
capable of transporting high volumes of sediment are most prevalent, or at points of rapid
deceleration e.g. at a reduction in slope angle or decreased confinement (Middleton and
Hampton, 1973). HDT's are therefore characteristic of both channels axis (Hubbard et al.
2016; Jobe et al. 2017; Bell et al, 2018a) and lobe axis (Hodgson et al. 2006; Grundvag et al.
2010; Bell et al. 2018a; Hansen et al. 2019) deposition.
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Figure 2.7: Synthesis of direct measurements from turbidity currents in the Monterey Canyon (Panll et al. 2018

The dense basal layers identified may produce the high-density turbidites seen in the rock record.

Debrites

Debrites are the depositional products of debris flows, and differ from turbidites
because they ‘freeze’ as they decelerate and deposit en-masse (e.g. Middleton and
Hampton, 1973). Debrites are typically identified as ungraded mud-rich deposits with
floating clasts that pinch-out abruptly at their edges (Talling et al. 2013). Debrite thickness
and clast-size depends on the yield strength of the parent debris flow, with high-strength

debrites characterised by thick deposits capable of transporting km-scale clasts (e.g.
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Hodgson et al. 2019), and low-strength deposits characterised by thinner debrites capable
of transporting sand-grade clasts (Talling et al. 2013) (Fig. 2.6). The cohesive nature of
debris flows makes them prone to deformation during transport (e.g. Jackson et al. 2011).
This often results in the preservation of deformational structures, such as folding (e.g.

Sobesiak et al. 2016) and faulting (e.g. Bull et al. 2009), within debrites.

Transitional flow deposits

Deposits may record flow behaviour intermediate between fully turbulent and fully
laminar, or ‘transitional’ (Talling et al. 2004; Baas and Best, 2008; Baas et al. 2009; Sumner
et al. 2009; Kane and Pontén 2012). This occurs when turbulent flows become enriched in
mud as they flow down-slope through progressive deposition of coarser sediment or
erosion and incorporation of mud (e.g. Haughton, 2003; Kane and Pontén 2012), causing
the development of turbulence-enhanced near-bed layer and turbulence-suppressed upper

layer within the flow (e.g. Baas et al. 2009) (Fig. 2.8).

Deposition from these flows records the longitudinal evolution of increasing mud

concentration and density stratification within the flow, with a clean basal sand deposited

Stages 0-1ll: turbulent-transitional flows with
progressively stronger density stratification

Concentra!/on

. Stage VIII: bypass of

i v P i T (D sheared low concentration
Stages IV-V: transitional _ ~ = Ll x 2P0 & tyrbulent flow ———
flows with well-developed — %= - g 2

rheological heterogeneity === &=

Stages VI-VII: transitional to laminar flows )
with dilute overridding turbidity current e

TII77777, 77777,

[Turbulent _
Laminar|:
{
A A
Clean sand Argillaceous sand Siltstone &

mudstone

__\ Downflow transition
= 7 Turbu/en!/low shearedframparentﬂow

Figure 2.8: Model for the longitudinal rheological transformation of a
turbulent flow and resultant deposits (Kane and Pontén, 2012).

by a lower turbulence-enhanced layer giving way to an increasingly thick debritic layer
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down-dip as the plug-flow expands (Sumner et al. 2009; Kane and Pontén, 2012) (Fig. 2.8).
Shearing by this over-riding plug-flow during aggradation may cause the development of
shear fabrics within TFDs, and prevents the development of bedforms (Kane and Pontén,
2012). TFDs have been recognised in many deep-water systems, such as the North Sea
(Lowe and Guy, 2000), East Carpathians (Sylvester and Lowe, 2004), and Gulf of Mexico
(Kane and Pontén, 2012), and are typically associated with deposition in distal (Kane and
Pontén, 2012) (Fig. 2.8) or topographically-confined (Lowe and Guy, 2000) environments

where mud concentrations are able to rise.
Hybrid beds

Flows that transform from turbulent to laminar through increases in mud
concentration may also deposit beds with more distinct divisions between deposits formed

from turbulent and laminar flow, forming composite deposits known as ‘hybrid beds’
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(Haughton et al. 2003, 2009; Talling et al. 2004; Davis et al. 2009; Hodgson, 2009; Baas et
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al. 2011; Fonnesu et al. 2015, 2018; Patacci et al. 2014; Southern et al. 2015; Muller et al.
2017) (Fig. 2.9). Hybrid beds are typically observed as single event beds comprising a
turbidite capped by, or associated with, a debrite (Talling et al., 2004; Jackson et al., 2009;
Haughton et al, 2009). The upper debrite is sometimes termed a ‘linked-debrite’
(Haughton et al., 2003; Sumner et al. 2009 Jackson et al., 2009). Hybrid beds are thought to
form through similar processes as TFDs, with numerous mechanisms for their
emplacement proposed (e.g. Sumner et al. 2009; Talling et al. 2004) (Fig. 2.9), such as:
incorporation of mud and rheological transformation during transport (e.g. Haughton et al.
2003; Hodgson, 2009; Kane et al. 2017), shearing and dilution of debris flows generating
co-genetic turbulent flows (e.g. Fallgater et al. 2017), and settling of sand grains through

low-strength debris flows (e.g. Marr et al. 2001).

Hybrid beds are typically differentiated from TFDs based the more defined
separation between component depositional processes, with an often distinct boundary
between the deposit of turbulent flow and the deposit of laminar flow seen within hybrid
beds (e.g. Haughton et al. 2003; 2009). The boundary between these deposits, however,
often records transitional flow conditions (e.g. Haughton et al. 2003; 2009) and there is a
complicated stratigraphic relationship between the flow phases (Fonnesu et al. 2015),
making an interpretation of flow process from deposit particularly difficult within hybrid

beds and transitional flows.
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Hybrid bed deposition typically requires long run-out distances to allow flow

segregation and elevated mud concentrations, and is therefore often found in the distal
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extents of deep-water systems (Davis et al. 2009; Hodgson et al., 2009; Pyles and Jenette,
2009; Spychala et al. 2017) (Fig. 2.10). It has also been observed that flow deceleration due
to basinal topography (Tinterri and Magalhaes, 2011; Patacci et al., 2014; Southern et al.
2015) and enhanced erosion at channel-lobe transitions (e.g. Mueller et al. 2017) may cause
the deposition of relatively proximal hybrid beds, which complicates the interpretation of

these deposits as purely distal facies.

Mass-transport

Large-scale slope failure can cause the deposition of large masses of lithified and
unlithified sediment hundreds of kilometres into the basin (Hampton et al., 1996; Locat
and Lee, 2002; Moscardelli and Wood, 2008), forming some of the largest depositional
events on Farth (Talling et al. 2007a; Georgiopoulou et al. 2010; Calves et al. 2015) (Fig.
2.11). The deposits of these failures are generally referred to as submarine landslides
(Hampton et al. 2006; Masson et al. 2006) or mass-transport deposits (MTDs), and can
vary from debrites, slides, to slumps and relatively dilute flows, depending on source
material and the degree of disaggregation (Nardin et al., 1979). MTDs are also associated
the formation of large scours, or ‘megascours’ (e.g Moscardelli et al. 2000), at their base
(Fig. 2.11C) and the transport of large allochthonous clasts, or ‘megaclasts’ (e.g. Jackson,
2011; Hodgson et al. 2019), into deep-water (Fig. 2.11B). MTDs are therefore associated
with deposits of widely varying lithology and depositional relief (Bryn et al. 2005; Kneller et
al. 2016; Fallgatter et al. 2018). In seafloor and subsurface data it is generally not possible to
recognize individual event deposits reliably, for this reason ‘mass-transport complex’
(MTC) is often used to depositional bodies interpreted as being emplaced by mass-

transport on seismic data (Weimer and Shipp, 2004; Moscardelli and Wood, 2008).
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Mass-transport occurs in many depositional environments, including: submarine
canyons (Carlson and Karl, 1988), volcanic ridges (Moore et al., 1989), lakes (Schnellmann
et al. 2005), fjords (Prior et al., 1982) and open continental margins (Calves et al., 2015),
and can triggered by tectonic activity (e.g. Ortiz-Karpf et al. 20106), volcanic activity (e.g.
Chadwick Jr et al. 2012), excess pore pressures (Urlaub et al. 2018) and glacial advance
(Bryn et al. 2005).

Headwall scarp
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Figure 2.11: Examples of the depositional features typically associated with mass-transport complexes, such as
headscarps (A,B), megaclasts (A lower left), and significant basal erosion (C). From Bull et al. (2009).
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2.4 Geomorphic elements of deep-water systems

Modern and ancient deep-water systems are linked by common geomorphic
elements that evolve in response to SGF erosion and deposition through time (e.g. Walker,
1967, 1978; Normark, 1978; Normark et al. 1979; Deptuck et al. 2007; Prather et al. 2012).
These elements can be broadly sub-divided into canyons, channels, channel-lobe transition

zones, and lobes.

Canyons

Submarine canyons are major conduits for the delivery of sediment from shallow to
deep-water and have been identified in the modern (e.g. Spencer, 1903; Covault et al. 2011,
2012; Harris and Whiteway, 2011) and ancient (e.g. Von der Borch et al. 1985; Morris et al.
1988) as erosional and predominantly linear features that are incised into the slope or shelf
(Fig. 2.12). Submarine canyons are formed by a combination of submarine erosion beneath
successive SGFs, retrogressive slope failure, and subaerial erosion during low sea-levels
(e.g. Daly et al. 1936; Farre et al. 1983; Pratson and Coakley, 1996; Talling, 1998; Popescu
et al. 2004; Krastel et al 2001), and can be hundreds of kilometres in length, tens of
kilometres wide, and several kilometres deep (Harris and Whiteway, 2011). Canyons are
either: 1) shelf-incised and directly connected to a river, 2) shelf-incised and not directly
connected to a river, or 3) slope-incised (‘blind’), with shelf-incised canyons more common
on active continental margins and continental margins supplied with high volumes of

sediment (Harris and Whiteway, 2011) (Fig. 2.12).

Modern submarine canyons are composed of an axis or axial channel, which when
sampled on the seafloor is coarse-grained, and a steep finer-grained margin prone to slope
failure (Paull et al. 2005). Decametre-long crescentic bedforms are also evident in canyon
axes, with direct measurements within the Monterey Canyon axis indicating they are
formed by periodic SGFs (Paull et al. 2010). When exhumed, canyon fills are characterised
by coarse-grained HDT's and barforms in a canyon axis confined by a slump-dominated
inner-canyon margin (Anderson et al. 2006). Flows that enter submarine canyons are often
not of high enough magnitude to flow through the entirety of the canyon (Howell and
Normark, 1982), with only rare high-magnitude events passing through the canyon, eroding

the canyon floor, and depositing further down-slope (e.g. Jobe et al. 2018).
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Figure 2.12: Examples of the different types of submarine canyon seen globally. A) Congo Canyon,
B) Swatch-No-Ground Canyon, Bay of Bengal, C) Gulf of Lion, D) Eastern Canada (Harris
and Whiteway, 2011).

Channels

Submarine channels are erosional or depositional features on the seafloor that are
capable of transporting vast quantities of sediment down-dip (e.g. Menard, 1955; Normark
et al. 1983; Mutti and Normark, 1987; Clark and Pickering, 1996; Peakall et al. 2000; Abreu
et al. 2003; Deptuck et al. 2007; Straub et al. 2008; Kane et al. 2010; 2011; Mayall et al.
2010; Hodgson et al. 2011; Sylvester et al. 2011; Figueiredo et al. 2013; Hubbard et al. 2014;
Hansen et al. 2015; Jobe et al. 2017; McArthur et al. 2019; Kneller et al. 2019) and often
evolve from canyons up-dip (e.g. Normark, 1978; Covault et al. 2011, 2012) (Fig. 2.13).
Submarine channels tend to initiate during a period of erosion and bypass (Elliott, 2000;
Fildani et al. 2013; Stevenson et al. 2015), becoming increasingly entrenched on the slope
through repeated phases of incision (Sylvester et al. 2011; Hodgson et al. 2016) (Fig. 2.14).

Sedimentation within submarine channels is typically characterised by an early phase both
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Chapter 2:Deep-water sedimentary systems

of lateral channel fill migration (e.g. Covault et al. 2016) and repeated erosion (e.g. Hage et
al. 2018; Englert et al. 2018; Vendettuoli et al. 2019) (Fig. 2.14).

Figure 2.13: The 1500 km-long Hiknrangi Channel offshore New Zealand. This Channel has was

shown to transfer sediment destabilised during seismic events, and is fed by > 10 submarine canyons

(Mountjoy et al. 2018).

As aggradation rates increase channel-fills begin to migrate vertically (e.g;
McHargue et al. 2011; Covault et al. 2016) (Fig. 2.14), with channel sinuosity also tending
to increase through time (Kane et al. 2008; Peakall et al. 2010; Sylvester et al. 2011, Maier et
al. 2013). Aggradation within channels occurs in response to a change in flow properties
(Kneller, 2003), driven by sediment supply or sea-level changes (e.g. Mutti and Normark,
1991; Kneller, 2003; Syvlester et al. 2011), or a decreased slope angle (e.g. Kneller, 2003;
Sylvester et al. 2011; McHargue et al, 2011). Aggradation will continue until the
accommodation space within the channel is filled and avulsion occurs (e.g. Clark and
Pickering, 1996; Maier et al. 2013;) or deformation re-routes flows (e.g. Sylvester et al.

2011), resulting in channel abandonment (e.g. Figueiredo et al. 2013).
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The large variation in channels identified in the subsurface and at outcrop has led
the development of hierarchical models that attempt to normalise descriptions across
different deep-water systems (e.g. Campbell, 1967; Sprague et al., 2002; 2005; Campion et
al., 2003; McHargue et al., 2011; Maier et al. 2013). The primary architectural component is
the channel element (McHargue et al, 2011; Macauley and Hubbard, 2013) or storey
(Sprague et al. 2003), with genetically related channel elements stacking together to form an
individual channel complex (McHargue et al. 2011). Genetically-related complexes form a

channel complex set (Campion et al., 2003; McHargue et al., 2011).
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Figure 2.14: Evolution of a Late Cretaceons channel systen: constrained using outcrop and detritas
gircon data (Englert et al. 2019).

Channel complex sets are composed of a channel-belt with an axis and margin (e.g.
Khneller et al. 2019). Channel belt margins consist of geomorphic elements such as terraces
and internal levees (Kane and Hodgson, 2011; Kane et al. 2011; Hansen et al. 2017; Kneller
et al. 2019). Channel complex sets are confined by either an external levee, formed by
repeated overspill of channelized flows (e.g. Normark et al. 1983; Kane and Hodgson,
2011), or an erosion surface (Kneller et al. 2019). In general, a submarine channel system is
composed of one or more complex sets that can be tied to a sequence stratigraphic
framework, with multiple complex sets typically representing a 3* order sea-level cycle (1 —
10 My) and a single complex set representing higher-order cycles (< 1 My) (McHargue et
al., 2011).
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Channel-lobe transition zones

When flows exiting channels lose confinement or encounter a break in slope they
form a geomorphic element called a channel-lobe transition zone (CLTZ), which marks the
region between well-defined channels and lobes (e.g. Palanques et al. 1995; Wynn et al.
2002; Hofstra et al. 2015; Stevenson et al. 2015; Carvajal et al. 2017; Maier et al. 2018;
Brooks et al. 2018; Pohl, 2020). Modern CLTZs can vary in downstream size from a few
kilometres (Normark et al. 1979) to greater than 100 km (Kenyon and Millington, 1995;
Morris et al. 1998), and tend to be characterised by bypass and erosion (e.g. Garcia and
Parker, 1989; Wynn et al. 2002; Brooks et al. 2018), which has been attributed to enhanced
turbulence as rapidly decelerating flows undergo a hydraulic jump (Garcia and Parker,
1989; Kenyon et al. 1995; Dorrel et al. 2016) or flow ‘relaxation’ as flows thin upon loss
channel of confinement, resulting in a lowering of the velocity maximum (Pohl et al.

2019a).

Deposition in CLTZs is often manifested by large (10s m to 1000s m) depositional
features, such as sediment waves and scour-fills (e.g. Wynn et al. 2002; Palanques et al.
1995; Fildani and Normark, 2004; Hofstra et al. 2015; Pemberton et al. 2016). CLTZs are
typically poorly preserved as they are subject to repeated periods of erosion and
aggradation as flow axes laterally migrate at mouth of feeder channels (e.g. Hofstra et al.
2018), thus CLTZs tend to require channel avulsion or enhanced aggradation to be

preserved (Pemberton et al. 2016; Brooks et al. 2018).

Lobes

Lobes are lobate depositional bodies formed at the distal extents of deep-water
systems (e.g. Normark, 1978; Normark et al. 1979, 1983; Mutti, 1992; Postma et al. 1993;
Deptuck et al. 2008; Prélat et al. 2009, 2010, 2011; Grundvag et al. 2014; Marini et al. 2015;
Spychala et al. 2016, 2017; Kane et al. 2017; Dodd et al. 2018; Rabouille et al. 2019;
McHargue et al. 2019) (Fig. 2.15). Lobe deposition occurs in response to flows spreading
radially and decelerating as they exit the confines of a channel (e.g. Normark, 1978; Mutti,
1992; Kane et al. 2017). Lobes typically thicken from the mouth of the channel and
through the CLTZ to an apex (e.g. Brooks et al. 2018) via flow relaxation and bypass upon
loss of channel confinement (Pohl et al. 2019a), with thinning and fining occurring laterally
and distally (Deptuck et al. 2008; Spychala et al. 2017; Hansen et al. 2018) (Fig. 2.16). This

depositional pattern generates positive relief on the seafloor, resulting in compensational
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stacking of successive lobes (e.g. Groenenburg et al. 2010; Straub et al. 2012; Jobe et al.
2017) (Fig. 2.16B).
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Figure 2.15: Submarine lobes deposited in Corsican Troungh mapped using seismic
data by Deptuck et al. (2008). Each lobe is fed by a canyon-channel system, with
the lobes building to form the North and South Golo fan.

Lobes can be divided into sub-environments based on the proximal-distal and

proximal-lateral evolution of the flows that build them (e.g. Walker, 1967; Mutti, 1977;
1992; Chen and Hiscott, 1999; Grundvag et al. 2014; Spychala et al. 2015, 2017; Kane et al.
2017; Bell et al. 2018ab; Fonnesu et al. 2018; Hansen et al. 2019), with high- and medium-
density turbidites of the lobe axis and off-axis transitioning down-dip to transitional flow
deposits, hybrid beds and low-density turbidites of the lobe fringe (e.g. Walker, 1967;
Haughton, 2003; Kane and Ponten, 2012; Spychala et al. 2017; 2019; Boulesteix et al.
2019ab) (Fig. 2.17). Hybrid beds are preferentially developed in the frontal lobe fringe as
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flows within the axis of lobes are more erosive, and therefore more capable of
incorporating mud and rheologically transforming (Spychala et al. 2017), and because
muddy dense flows have more momentum, thus show reduced radial spreading in a

downstream direction (Fig. 2.17).
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Figure 2.16: The ontcrop-derived (B) hierarchy of submarine lobe systems from Prélat et al. (2009), applied to
subsurface Quaternary lobes offshore Corsica by Sweet et al (2019).

As with channels, a hierarchical framework can be applied to lobes (e.g. Pyles et al.
2007; Prélat et al. 2009; Deptuck et al. 2008; Straub and Pyles, 2012; Sweet et al. 2019) (Fig.
2.16). Different lobe elements were identified in a Pleistocene submarine fan through
seismic interpretation by Gervais et al. (2006), however this study lacked lithological
constraint. Deptuck et al. (2008) integrated core with seismic observations, which

addressed some of these uncertainties, and added terms such as proximal isolated lobes
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(PILs) and composite mid-fan lobes (CMLs) to the nomenclature. Much of the most recent
key work on lobe architecture and hierarchy has been derived from the well exposed deep-
water sediments of the Karoo Basin, South Africa (e.g. Prélat et al, 2009; 2010; 2013;
Hodgson, 2009; Kane et al. 2017; Spychala et al. 2017), with stacks of individual event-beds
interpreted to form a lobe element (Fig. 2.16A). Lobe elements in turn stack to form lobes,
with a sequence of genetically related lobes making up a lobe complex (Prélat et al. 2009).
Similar hierarchies have since been described in modern lobe systems (e.g. Sweet et al.

2019) (Fig. 2.16B).
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Figure 2.17: Facies associations related to submarine lobe sub-environments. These associations reflect the

longitudinal evolution of flows across a lobe. B, C) Flow process change from the frontal fringe to the distal fringe
(Spychala et al. 2017).

Differentiation between these hierarchical elements has been defined using the
thickness of bounding and fine-grained ‘interlobes’ (Prélat et al. 2009), with interlobe
thicknesses positively correlating with position in the hierarchy. An interlobe element, for
example is < 2 cm thick, while an interlobe is up to 2 m thick (Fig. 2.16A). From this Prélat
et al. (2009) suggested a changing depositional control up-hierarchy, with lobe elements
tending to be controlled by autogenic compensation and lobe complexes controlled by

allogenic sediment supply shut-off. Recent work by Boulesteix et al. (2019ab) has shown
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that interlobes are composed of mm-scale event beds, and are the distal or lateral extents of

lobes.

2.5 Topographic controls on deep-water sedimentary systems

One of the earliest observations of SGFs being affected by topography was noted
by Menard (1957), who showed through seafloor bathymetry data, or “echograms”, from
the Baja California Seamount Province that topography on the seafloor was steering
canyon-sourced sediment gravity flows. Gorsline and Emery (1959) then used bathymetry
and core data to show that seafloor topography may partition the seafloor into a series of
confined sub- or minibasins that are sequentially filled from proximal to distal by
successive flows (Fig. 2.18). This early model can be regarded as one of the first models for
the stratigraphic evolution of a confined basin. The following sections will discuss some of
the features of SGF interaction with topography and the stratigraphic evolution of

confined basins since these early models were proposed.
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Figure 2.18: An early model for depositional evolution of confined basins from offshore California (Gorsline and
Emery, 1959). Fault-bound basins fill proximally until they reach the basin spill-point (a low within the confining

bank or sill’) and are able deposit into more distal down-dip basins.

Why are sediment gravity flows affected by topography?
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Sediment gravity flows are driven down-slope by the force of gravity acting upon
them (e.g. Daly, 1936). The shape of this slope dictates the direction and speed of these
flows, which will affect the location and character of their deposits (e.g. Kneller, 1995). The
deposits of SGFs can therefore be used to infer the shape of the topography that the flow
interacted with, and the nature of flows themselves. SGFs are attributed to a spectrum of
different flow processes (e.g. Middleton and Hampton, 1973; Mulder and Alexander, 2001;
Talling et al. 2015), accordingly their response to topography will be different. Kneller and
McCaffrey (1999) suggested that the basal and denser part of an individual flow will
respond differently to topography than the upper and more dilute part of the same flow,
which will affect deposition adjacent to topography; this was described using the internal

Froude number (F;):

F;=U/(Nh)

where U is the depth-averaged velocity, h a charactestic length scale (e.g. thickness
of current or height of topography) and N is the buoyancy frequency, which is positively
correlated with the density of the flow. When F; is small, dividing streamlines will exist
within a flow. Above the streamline, kinetic energy is sufficient to allow the flow to run up
and over an obstacle, below the streamline the flow will be deflected around the obstacle. It
therefore follows that the high-density flows, or high-density regions of flows (with higher
N values), will be more affected by topography than lower-density flows or lower-density
regions of flows (with lower N values). Deposits from these flows, or an individual
stratified flow, will consequently be differentially distributed around topography, resulting

in deep-water facies distributions that may be indicative of topographic interaction.

Topographically-influenced facies

Flow interaction with topography has been shown to result in a range of facies
variations that are characteristic of deposition adjacent to slopes (Pickering and Hiscott,
1985; Sinclair, 1994; Kneller and McCaffrey, 1999; McCaffrey and Kneller, 2001; Felletti,
2002; Al Ja’Aidi et al. 2004; Lomas and Joseph, 2004; Bersezio et al. 2005; Pyles and
Jennette, 2009; Stevenson and Peakall, 2010; Bakke et al. 2013; Patacci et al. 2014; Spychala
et al. 2016, Southern et al. 2017; Cunha et al. 2017; Tinterri et al. 2017; Bell et al. 2018a).
Topographic interaction, for example, has used to explain the deposition of thick, sand-rich
turbidites adjacent to paleo-slopes (e.g. Alexander and Morris, 1994; Kneller and
McCaffrey, 1995; Puigdefabregas et al. 2004; Bersezio et al. 2005; Stevenson and Peakall,
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2010; Tinterri and Magalhaes, 2011) through processes such as: 1) rapid flow deceleration
and aggradation (e.g. Kneller, 1995; Bersezio et al. 2005), 2) rapid flow deceleration and
hydraulic jump formation (Alexander and Morris, 1994; Spinewine et al. 2009), and 3) rapid

aggradation, density contrast reduction, and ‘lofting’ of the flow (Stevenson and Peakall,

2010).
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Figure 2.19: Example of the reflected facies that may be produced as turbulent flow ineracts
with topography (Linterri et al. 2016).

Topographic interaction may also cause flow deflection (Fig. 2.19), which can result
in 1) remobilisation and re-deposition of sand deposited higher on the slope at the foot of
the slope (e.g. McCaffrey and Kneller, 2001; Puigdefabregas et al. 2004), 2) run-up and
collapse of the high-velocity base of a flow into its more dilute cloud (Haughton, 1994;
Hodgson and Haughton, 2004), 3) pulsing and repetition of turbidite divisions (i.e. Bouma

divisions) (e.g. Edwards et al. 1994), or 4) along-slope flow acceleration or constriction,
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resulting in enhanced bypass and erosion (e.g. Kneller, 1995; Kneller and McCaffrey, 1999;
Jobe et al. 2017).
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Figure 2.20: Model for hybrid bed development adjacent to topography based on onterop
data from SE France (Patacci et al. 2014)

Topographic interaction may also result in laminae-scale soft-sediment deformation
(e.g. Tinterri, 2016) and complex tractional structures (e.g. Pickering and Hiscott, 1985) as
flows deflect off counter-slope and re-work their aggrading deposit (Allen, 1985; Pantin
and Leeder, 1987; Muck and Underwood; 1990; Patacci et al. 2015; Bell et al. 2018a) (Fig.
2.19). This re-working can also result in paleocurrent divergence adjacent to topography,
which can be used to reconstruct the shape of the topography (Pickering and Hiscott,

1985; Marjanac, 1990; Kneller et al. 1991; Sinclair, 1994; Marini et al. 2015).
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High-aggradation rates adjacent to topography and consequent loss of sand-grade
sediment has also been shown to enrich flows in mud, resulting in short length-scale (10s —
100 m) rheological flow transformation and hybrid bed deposition (Lowe and Guy, 2000,
Patacci et al. 2014; Barker et al. 2008; Southern et al. 2015; Southern et al. 2017; Bell et al.
2018b) (Fig. 2.20), which may affect depositional architectures adjacent to slopes (Bell et al.
2018b). Hybrid beds have also been hypothesized to form next to topography due to
incoming flows inducing slope failure and the emplacement of a debrite within an
aggrading turbidite (McCaffrey and Kneller, 2001), with thicker debrites indicating

proximity to the slope.

Onlap geometries

Onlap is defined by Mitchum (1977) as “a base-discordant relation in which initially
horizontal strata terminate progressively against an initially inclined surface, or in which
initially inclined strata terminate progressively updip against a surface of greater initial
inclination”. Further to this Mitchum (1977) differentiates proximal onlap against a surface
dipping towards the source of sediment and distal onlap as dipping away from the source

of sediment.

McCaffrey and Kneller (2001) suggest that the controlling factor on turbidite onlap
geometry is parent flow magnitude (discharge rate per unit width); large flows will thicken
at topography (type A) while smaller flows will thin (type B). Smith and Joseph (2004) use
different criteria to describe onlap types; Class 1 onlaps display no coeval slope
aggradation, resulting in ‘pure’ or abrupt onlap against the primary onlap surface, or type A
of McCaffrey and Kneller (2001). Class 2 onlap occurs when higher rates of slope
aggradation result in each successive turbidite being deposited on a younger, or secondary,
onlap surface, resulting in a ‘feathered” onlap. The onlap surface in this situation will follow
a steep trajectory if slope aggradation rates are high, giving a false impression of the

geometry of the basin margin (Smith and Joseph, 2004).

Pickering and Hilton (1998) describe the geometry of turbidite onlap using two end
members; type 1 and type 2. Type 1 onlap is broadly consistent with the pure onlap of
Smith and Joseph (2004). Type 2 onlap is differentiated by significant draping of turbidites

over the onlap surface, and is similar to class 2 of Smith and Joseph (2004).
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Bakke et al (2013) integrated their own subsurface and outcrop observations with
observations from other studies (McCaffrey and Kneller, 2001; Gardiner, 2006; Patacci,
2010) to propose six different styles of seismically-resolvable deep-water onlap: simple
onlap, draping onlap, bed thickening, advancing pinch-out, convergent pinch-out and
converging thickening (Fig. 2.21). Preferential formation of each of these onlap styles is

controlled by various factors, such as: flow concentration, flow magnitude, slope angle and

slope stability (Bakke et al. 2013).

ening (Pet)

\Converge“t thick

Figure 2.21: Different onlap styles described by Bakke et al. (2013).
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Stratigraphic evolution of confined basins

Confined basins are those in which SGF routing and depositional patterns are
controlled by the topography of the basin (e.g. Gorsline and Emery, 1959; Van Andel and
Komar, 1969; Ricci Lucchi and Valmori, 1980; Hiscott et al. 1986; McGee et al. 1994;
Winker, 1996; Gervais et al. 2004; Lomas and Joseph, 2004; Bersezio et al. 2005; Covault
and Romans, 2009; Marini et al. 2015; 2016a; Cunha et al. 2017; Dodd et al. 2018).
Southern et al. (2015) classified confined systems based on whether they are unconfined
and uncontained (UU), confined and uncontained (CU) or confined and contained (CC)
(Fig. 2.22). Contfined flows are affected by topography, while contained flows are entirely
encircled and retained within a depositional low (Southern et al, 2015). Contained
deposition is analogous to flow ‘ponding’ (sens# Van Andel and Komar, 1969), which is

typically used to describe flows entirely confined by their basin margins.

F:Y Unconfined & uncontained (UU) [2] Confined & uncontained (CU) Confined & Contained (CC)

B Sea-floor topography  [] Depositional system

Figure 2.22: Different types of confinement that a deep-water system, or individual SGF, may be characterised
by (from Southern et al. 2015).

Ponded flows generate limited positive relief as the full sediment load is trapped
within the basin, thus developing a ‘flat-topped cloud’ that spreads over the whole basin
(Marini et al. 2015), which results in ‘sheet-like’ deposition and simple vertical stacking
patterns (e.g. Pickering and Hiscott, 1985; Haughton, 1994; Talling et al. 2007b). When
relative confinement is reduced stacking patterns become more complex as beds are able to

thin distally, and thus stack with varying degrees of compensation (e.g. Marini et al. 2015;

Bell et al. 2018b; Liu et al. 2018).

Relative confinement has also been inferred through the stratigraphic trend of the
mud-to-sand ratio within individual event beds (e.g. Felletti, 2002; Sinclair and Cowie,
2003; Bersezio et al. 2005; Marini et al., 2015), with the absence of a mud-cap indicating
that the confining topographical relief was not sufficient to prevent bypass of the finer,

upper region of the flow (e.g. Haughton, 1994), resulting in ‘flow stripping’ (e.g. Sinclair
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and Tomasso, 2002; Sinclair and Cowie, 2003; Toniolo et al. 2006; Patacci et al. 2015).
Thick mud-caps may indicate flows were fully confined by their basin margins (e.g.

Haughton, 1994; Marini et al. 2015).

Integration of outcrop (e.g. Sinclair, 1994) and subsurface (e.g. Prather et al. 1998;
Prather, 2000) data led Sinclair and Tomasso (2002) to describe a generic depositional
model for the fill of a confined basin with four aggradational stages (Fig. 2.23): 1) flow
ponding, where flows are entirely confined by the basin margins 2) flow stripping, where
the upper parts of flows are able to ‘escape’ the basin, 3) flow bypass, where the majority of
the incoming flow is able to deposit down-dip and 4) blanketing or abandonment.
Numerical modelling by Wang et al. (2016) has shown, contrary to Sinclair and Tomasso
(2002), that confined minibasins tend to fill retrogradationally, with deposition
concentrated in the basin centre and counter slope due to a hydraulic jump as incoming
flows decelerate upon impact with the basin floor. Similar retrogradational stacking

patterns were described from outcrop by Amy et al. (2007).
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Smith (2004) regarded the fill-spill model as an end-member depositional style for
confined basins, with the other end member termed being a ‘connected tortuous corridor’.
In the tortuous corridor model flows are laterally confined down-dip, but not frontally
confined, and follow a ‘tortuous’ topographically-controlled path down-dip. This style of
deposition has since been observed on the modern seafloor (Bourget et al. 2011), the
subsurface (e.g. Hay and Prather, 2015) and at outcrop (e.g. Vinnels et al. 2010; Pinter et al.
2018).
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Figure 2.23: The fill-spill model for the stratigraphic evolution of a confined basin from Sinclair ana
Tomasso (2002).
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2.6 External controls on deep-water sedimentary systems

The three main external, or allogenic, controls on sedimentary systems are climate,
tectonism, and eustatic sea-level, which act together to control sediment supply and
accommodation space (e.g. Vail et al. 1977; Muto and Steel, 1997; Miall, 2014; Castelltort et
al. 2017; Cantuneanu, 2020). Depositional signals formed by modifying the relative impact
of these controls are stored in the stratigraphic record of sedimentary basins (e.g.
Castelltort and Driessche, 2003; Allen, 2008; Simpson and Castelltort, 2012; Coulthard and
Van de Wiel, 2013; Romans et al. 2016; Toby et al. 2019). Deep-water sedimentary systems
represent the ultimate sink of these signals and are therefore important in reconstructing
climatic, tectonic or eustatic conditions through time (Fig. 2.24) (e.g. Allen, 1997; Semme
et al. 2009a; Covault et al. 2010; Romans et al. 2016; Castelltort et al. 2017; Hessler and
Fildani, 2019). While external controls are often highly interwoven (e.g Dadson et al. 2003;
Allen, 2008; Bourget et al. 2010; Hessler and Fildani, 2019), such as cooler climates causing
glaciation and lower eustatic sea-levels (e.g. Miller et al. 2005; Katz, 2008), the aim of the
following sections is to give examples of how particular external factors have been shown

to affect deep-water systems.
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Figure 2.24 The key factors affecting sediment routing to deep-water environments (from Clark et al. 2017; Hessler
and Fildani, 2019)

Climate

Climate has been shown to be intimately linked to deep-water sedimentary systems
in a variety of different locations (e.g. Hessler and Fildani, 2019). Holocene submarine fans
offshore California, for example, have been shown to grow in response to higher
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precipitation and fluvial discharge associated with increased El Nifio magnitude and
frequency (e.g. Romans et al. 2009; Covault et al. 2010). Holocene humid-arid cycles related
to the West African monsoon have also been shown to affect channel avulsion patterns in
the Congo fan (Picot et al. 2019) (Fig. 2.25). Similarly, it has been found that monsoonal
cycles in Asia have controlled sedimentation in the Bengal Fan (e.g. Weber et al. 2003;
Fournier et al. 2017). Increased precipitation and run-off related to orbital cycles has also
been related to increased deep-water sedimentation in exhumed Miocene systems in
Greece (Postma et al. 1993) and exhumed Eocene systems in Spain (Catalejo and Pickering,

2014).

Global temperatures also effect deep-water sedimentation, with cooler climates and
associated glaciations during the Pleistocene altering onshore drainage networks (Reece et
al. 2011; Fildani et al. 2018) and increasing hinterland erosion rates (e.g. Gulick et al. 2015),
thus increasing sediment supply to deep-water systems. De-glaciation has also been shown
to increase discharge to fluvial systems through meltwater run-off, which consequently
increases sediment delivery to deep-water systems, such as the Mississippi fan in the Gulf
of Mexico (Mason et al. 2017) and the Tufts fan in the NW Pacific (Brunner et al. 2009;
Normark and Reid, 2003).
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Figure 2.25: The Congo Fan is an example of a predominantly climate-controlled deep-water system (from
Picot et al. 2019), with bumid periods cansing enhanced run-off and sediment supply to deep-water. P =

progradation, R = retrogradation, MR = maximum retrogradation.

Tectonism

Much like climate, tectonism can control deep-water sedimentation in a variety of
ways, from orogenic uplift and erosion (e.g. Clift et al. 2008; Castelltort et al. 2017) to
seismic activity and slope failure (e.g. Bao et al. 2018; Mountjoy et al. 2018), which can be
used to assess the earthquake recurrence intervals (e.g. Nelson et al. 2012). Deep-water
systems connected to Himalayas, for example, have been shown to be closely-related to the

growth of the mountain belt (Fig. 2.26), with sediment supply to the Indus and Bengal
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Fans related to up to 55 million years of Himalayan evolution (Milliman and Syvitski, 1992;
France-Lanord et al. 1993; Einsele et al. 1996; Métivier et al. 1999, Clift et al. 2001; 2011;
Pickering et al. 2020).
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Figure 2.26: An example of the tectonic influence on submarine fan growth from the Bengal-Nicobar Fan, which is
beavily-influenced by the Sunda subduction margin encroaching from the east (Pickering et al. 2020)

Tectonism related to plate collision has also been shown to result in increased rates
of deep-water deposition in the Eocene Pyrenean foreland (Pickering and Corregidor,
2005; Pickering and Bayliss, 2009; Castelltort et al. 2017), the present-day Japanese Trench
(Bao et al. 2018) and Izu peninsula (Ito, 1985), and the Colombian Sinu fold-belt (Kolla
and Buffler, 1984; Alfaro and Holz, 2014; Ortiz-Karpf et al. 2015; 2016). Tectonism with
associated volcanism can also promote deposition in deep-water systems through magmatic
underplating and uplift (e.g. White and Lovell, 1997; Williams and Gostin, 2000), and a
supply of volcaniclastic sediment from active volcanoes (Farquharson et al. 1984; Saint-
Ange et al. 2007; Shumaker et al. 2018). The steep slopes and narrow shelves that tend to
characterise these tectonically-active settings will also promote deep-water deposition by
both increasing sediment supply rates and the ability of sediment to be transferred to
deeper-water (e.g. Stow et al. 1983; Milliman and Syvitski, 1992; Reading and Richard,
1994; Covault et al. 2007, 2011; Harris and Whiteway, 2011).
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Chapter 2:Deep-water sedimentary systems

Tectonic activity has also been shown to reduce sediment supply to deep-water
systems by diverting onshore drainage systems away from continental margins (e.g.
Marsaglia et al. 2011). It has also been demonstrated that tectonically-forced changes to
drainage patterns in North America played a significant role in modulating sediment supply
to the deep-water Gulf of Mexico during the Early Cenozoic (Sharman et al. 2017) (Fig.
2.27).
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Figure 2.27: Tectonically-forced changes in drainage pattern during the Cenozoic have cansed sedimentation within
the Gulf of Mexico to drastically increase (Sharman et al. 2017).

Eustasy

Low eustatic sea-levels, or ‘lowstands’, are suggested to increase sediment delivery
to deep-water systems by allowing rivers and deltas to reach the shelf-edge and deposit
sediment directly into deep-water (sensz Vail et al. 1977; Posamentier et al. 1988; van
Wagoner et al. 1990). Lowstands have been shown to increase sediment delivery to many
deep-water systems, such as the Quaternary Amazon Fan (e.g. Manley and Flood, 1988;
Flood and Piper, 1997; Schliinz et al. 1999), the Quaternary Indus Fan (e.g. Prins et al. 2000
Bourget et al. 2013), the Quaternary Danube Fan (Popescu et al. 2001), the Quaternary
Golo Fan (Sweet et al. 2019), Miocene fans offshore China (Pickering et al. 2013), Eocene
fans in the Pyrenean foreland (e.g. Castelltort et al. 2017) and the Cenozoic Gulf of Mexico
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(Galloway, 2001). Most of these studies describe systems on passive margins (e.g. the
Amazon and Indus Fans) deposited during icehouse periods characterised by large sea-level
fluctuations (e.g. the Quaternary), as these are the conditions during which low eustatic sea-
levels are believed to have the greatest influence of deposition (e.g. Pitman, 1978; Somme

et al. 2009b).
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Figure 2.28: Holocene fans are preferentially active during all periods of sea-level fall and rise (solid black
line). Low sea-levels are therefore not always corvelated with increased deep-marine deposition. Deposition rate

is shown by the finer line (Covanlt and Grahanm, 2010).

The lowstand model is therefore not ubiquitous in deep-water settings, with
periods of increased deep-water sedimentation found to be associated with all sea-level
stands (e.g. Covault and Graham 2010) (Fig. 2.28). The Mississippi deep-water system, for
example, received significant volumes of sediment during rising sea-levels as canyons that
were incised landward during lowstands remained active during higher sea-levels (Kolla and
Perlmutter, 1993). Rising sea-levels have also been shown to remobilize and redeposit Late
Quaternary shelf sediments into deeper water (Pierau, 2010), with Allin et al. (2018)
suggesting that high rates of sea-level change, whether rising or falling, increase the
likelihood of canyons ‘flushing’ their sediment down-slope. Similar findings were made by
Trincardi et al. (2003), who hypothesized that rapid Late Quaternary sea-level rise enhanced
pore pressures within drowned shelf-margin sediments of the Tyrrhenian Sea, resulting in
slope failure and mass-transport. Remobilization of carbonate platforms and deposition in
deep-water has also been shown to occur preferentially during rising sea-levels (‘highstand
shedding) (e.g. Droxler and Schlager, 1985; Schlager et al. 1994). Other external controls,
such as high sediment supply (e.g. Carvajal and Steel, 2006), narrow shelves (e.g. Stow et al.
1983; Covault et al. 2011), steep canyon gradients (e.g. Weber, et al. 1997), and ocean
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currents (e.g. Covault et al. 2007; Cantuneanu, 2020), will modulate the impact of eustasy

on deep-water systems.
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CHAPTER 3:The stratigraphic evolution of onlap in siliciclastic deep-water

systems: autogenic modulation of allogenic signals

Euan L. Soutter', Ian A. Kane', Arne Fuhrmann', Zoé A. Cumberpatch' and Mads
Huuse'

'"Department of Earth and Environmental Sciences, University of Manchester, Manchester,

M13 9PL, U.K.

3.1 Abstract
Seafloor topography affects the sediment gravity flows that interact with it. Understanding
this interaction is critical for accurate predictions of sediment distribution, paleogeography,
and structural reconstructions of deep-water basins. The effects of seafloor topography can
be seen from the bed scale, through facies transitions toward intra-basinal slopes, to the
basin scale, where onlap patterns reveal the spatial evolution of deep-water systems. Basin-
margin onlap patterns are typically attributed to allogenic factors, such as sediment supply
signals or subsidence rates, with few studies emphasizing the importance of predictable
spatio-temporal autogenic flow evolution. This study aims to assess the autogenic controls
on onlap by documenting onlap styles in the confined Eocene-to-Oligocene deep-marine
Annot Basin of SE France. Measured sections, coupled with architectural observations,
mapping, and paleogeographical interpretations, are used to categorize onlap styles and
place them within a generic stratigraphic model. These observations are compared with a
simple numerical model. The integrated stratigraphic model predicts that during
progradation of a deep-water system into a confined basin successive onlap terminations
will be partially controlled by the effect of increasing flow concentration. Initially thin-
bedded low-density turbidites of the distal lobe fringe are deposited and drape basinal
topography. As the system progrades these beds become overlain by hybrid beds and other
deposits of higher-concentration flows developed in the proximal lobe fringe. This
transition is therefore marked by intra-formational onlap against the underlying and lower-
concentration lobe fringe that drapes the topography. Continued progradation results in
deposition of lower-concentration deposits in the lobe off-axis, resulting in either further
intra-formational onlap against the lobe fringe or onlap directly against the hemipelagic
basin margin. Basinal relief is gradually reduced as axial and higher-volume flows become
more prevalent during progradation, causing the basin to become a bypass zone for
sediment routed down-dip. This study presents an autogenic mechanism for generating
complex onlap trends without the need to invoke allogenic processes. This has implications
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for sequence-stratigraphic interpretations, basin subsidence history, and forward modeling

of confined deep-water basins.

3.2 Introduction

Deep-water submarine fans are amongst the largest sedimentary bodies on Earth
and comprise terrigenous sediment shed from the adjacent continental shelf and slope (e.g.,
Piper et al., 1999; Talling et al., 2007; Prélat et al., 2010; Clare et al., 2014). They offer a
record of Earth’s climate and sediment transport history, form valuable hydrocarbon
reservoirs, aquifers, and are sites of mineral accumulation (e.g., Weimer and Link, 1991;
Hodgson, 2009; Semme et al.,, 2011; Bell et al.,, 2018a). Sediment-gravity-flow evolution
across unconfined deep-water settings results in a fairly uniform radial spreading and
deceleration of flows, causing the development of elongate to lobate sedimentary bodies
with predictable facies transitions (e.g., Baas, 2004; Hodgson et al., 2009; Spychala et al.,

2017), which are generically known as ‘lobes’.

Sediment gravity flows encountering seafloor topography in confined-basin settings
form a range of onlap geometries that are often associated with complicated sedimentary
facies (Fig. 3.1) (e.g., Kneller, 1991; Haughton, 1994; Wynn et al. 2000; McCaffrey and
Kneller, 2001; Smith, 2004a; Smith 2004b; Amy et al., 2004; Gervais et al. 2004; Lomas and
Joseph, 2004; Smith and Joseph, 2004; Puigdefabregas et al., 2004; Gardiner, 2006; Mayall
et al. 2010; Tinterri et al. 2016; Hansen et al. 2019). The effect of seafloor topography on
sediment gravity flows, their deposits, and onlap styles has been studied through outcrop
data (e.g., Kneller et al. 1991; Sinclair, 1994; Bakke et al., 2013), subsurface data (e.g,
Prather et al., 1998; 2012; Covault and Romans, 2009; Bakke et al., 2013), and numerical
models (e.g., Smith, 2004b; Kubo, 2004; Gardiner, 2006; Sylvester et al., 2015) and physical
models (e.g., Kneller, 1995; Kneller and McCaffrey; 1995; Amy et al., 2004; Brunt et al.,
2004; Kubo, 2004). Seafloor topography is generated by a variety of geological processes,
such as: pre-depositional tectonic deformation (e.g., Jackson et al. 2008; Kilhams et al.
2012), syn-depositional tectonic deformation (e.g., Wilson et al., 1992; Haughton, 2000,
Grecula et al., 2003; Hodgson and Haughton, 2004; Tomasso and Sinclair, 2004; Kane et
al. 2010; Salles et al., 2014), mass transport deposit relief (e.g. Armitage et al., 2009; Ortiz-
Karpf et al,, 2015; 2016; Kneller et al., 2016; Soutter et al., 2018) and salt diapirism (e.g.,
Hodgson et al., 1992; Kane et al. 2012; Prather et al. 2012; Oluboyo et al. 2014; Doughty-

Jones et al, 2017). Improved prediction of the distribution of sediment gravity flow
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deposits around seafloor topography is therefore critical for both paleogeographic
reconstructions (e.g., Pinter et al., 2017) and stratigraphic hydrocarbon or CO; trap risking
(e.g., McCaffrey and Kneller, 2001).

The onlap geometry (3D shape of an event bed or sequence of related event beds
at pinch-out) and facies (internal sedimentary characteristics of an event bed at pinch-out)
(Fig. 3.1A), herein termed onlap termination, are controlled by: 1) flow magnitude,
duration, velocity, thickness, concentration, and sediment composition; 2) the gradient and
incidence angle of the counter-slope; and 3) seafloor composition and induration.
Typically, high-concentration flows and steep counter-slopes cause abrupt terminations,
whereas low-concentration flows and shallow counter-slopes cause draped terminations
(Fig. 3.1) (Smith and Joseph, 2004; Bakke et al. 2013). Flows with a high mud content may
also be more prone to varying degrees of rheological transformation approaching countet-
slopes, resulting in complicated facies distributions at confining basin margins (Fig. 3.1)

(Barker et al., 2008; Patacci et al., 2014; Southern et al., 2015).

Recent field-based studies on the spatial and temporal evolution of unconfined
Simple onlap

Thickening onlap

Draping onlap

Hybrid

Transforming onlap

Convergent pinch-out

Convergent thickening

Advancing pinch-out

Figure 3.1: A) Examples of onlap termination styles (modified from Al-Jaidi et al. 2004; Bakke et al.
2013; Patacii et al. 2014). B) Generalized relationship between flow concentration and onlap geometry
(modified from Bakfke et al. 2013). t = time.

submarine lobes have used the longitudinal evolution of flows and their associated facies to
establish criteria for differentiating lobe sub-environments at the bed scale (e.g., Prélat et al.
2009; Grundvag et al. 2014; Spychala et al. 2017). The applicability of these facies
associations to confined lobes and the complex system-scale stacking patterns that they
may produce is only recently being investigated (e.g., Marini et al. 2015; Spychala et al.
2015, 2017; Bell et al. 2018b; Fonnesu et al. 2018; Liu et al. 2018). Previous flow-dependant

onlap models mainly focussed on end-member geometries (e.g., McCaffrey and Kneller,
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2001; Smith, 2004b; Smith and Joseph, 2004). As yet there is no generic model to account
for how the wide variety of deposits resulting from the longitudinal evolution of sediment

gravity flows will manifest themselves at onlap surfaces through the fill of a confined basin.
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Figure 3.2: Location and geological setting of the Cenozoic foreland basin of the Western Alps. The
generalized Late Eocene paleogeography is overlaid (modified from Joseph and Lomas, 2004 and Salles
et al. 2014) and shows the Annot Basin (red box) sitnated in a dastic deep-marine environment.. Rea
line indjcates boundary between terrestrial and marine environments. REZ, Ronaine Fanlt Zone. Blue

arrows indicate paleoflow, and blue lines indicate schematic fluvial systems.
This study uses the well-constrained Cenozoic Annot Basin of SE France to integrate bed-
scale and basin-scale onlap observations into a generically applicable depositional model.
The aims of this study are to: i) reappraise the Annot Basin stratigraphy with respect to
specific deep-water sub-environments, with particular emphasis on the poorly studied
eastern exposures of the basin, if) document lateral facies changes within beds approaching
the basin margin and relate these facies changes to longitudinal flow evolution, iii) assess
how the longitudinal evolution of confined flows impacts onlap geometry and stacking
patterns, and iv) integrate these observations into a generic model for the evolution of

onlap in deep-water basins.
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Chapter 3:The stratigraphic evolution of onlap in siliciclastic deep-water systems: autogenic
modulation of allogenic signals

3.3 Annot Basin

Basin structure

The 160-km-long and 80-km-wide (Clark and Stanbrook, 2001) Cenozoic foreland
basin of the western Alps formed due to SW-directed collision of the Adria and European
plates, and subsequent loading of the European plate by the Alpine orogenic wedge (Figs.
3.2, 3.3) (e.g., Ford et al., 1999). This orogenic deformation is represented in the foreland-
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Figure 3.3: Structure, chronostratigraphy, and geological map of the Annot Basin (modified from
Puigdefabregas et al., 2004; Du Fornel et al. 2004; Salles et al. 2014). The varions anticlines confine
deposition across the Basin. The clastic sequence has been divided into members based on aerial and outerop
mapping (modified from Puigdefabregas et al., 2004; Salles et al., 2014). An attempt has been made to
reconcile the member subdivisions used by Puigdefabregas et al. (2004) and Salles et al. (2014). White boxes
indicate logged localities. White lines indicate correlation panels in Fig. 5 and Fig. 6. RFZ, Rouaine Fault

Zone; BE, Branx Fault. Black dashed lines indicate exhumed syn-sedimentary fanlt escarpments.
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basin stratigraphy by a progressive younging to the southwest (e.g. Ford et al., 1999; Du
Fornel et al. 2004). Sediment deposition in the basin was affected by complicated basinal
topography (e.g., Joseph and Lomas, 2004), which formed due to Late Cretaceous
northward-directed Pyrenean compression that was subsequently overprinted by Cenozoic
SW-directed Alpine compression (Fig. 3.3) (e.g., Apps et al., 2004). This resulted in NW-
SE-oriented synclinal sub-basins with E-W anticlinal sills. The synclines are interpreted as
the surface expression of underlying Alpine thrust-fault-propagation folds (Fig. 3.3) (e.g.,
Elliott et al. 1985; Apps, 1987; Ravenne et al. 1987).

The Annot sub-basin, herein termed the Annot Basin, is one of the exhumed
synclinal Cenozoic depocenters in the Alpine foreland basin, representing the proximal end
of the deep-marine Annot-Grand Coyer-Chalufy chain of sub-basins (Figs. 3.2, 3.3) (see
Joseph and Lomas, 2004, for review). The Annot Basin is bounded to the south by the SW-
NE Rouaine Fault Zone, which acted as an entry point for sediment gravity flows into the
basin (e.g., Salles et al. 2014) (Figs. 3.2, 3.3). The SW-NE Braux normal fault is related to
this fault zone and created local bathymetric relief during the Late Eocene (e.g., Tomasso
and Sinclair, 2004) (Figs 3.3, 3.4). The western and eastern margins of the basin are defined
by fault-propagation anticlines created by Mesozoic blind thrusts (Figs. 3.3, 3.4) (e.g., Apps,
1987). The eastern margin is formed by the Melina anticline, or “kink zone” (Apps, 1987),
and the western margin by the Puy du Rent anticline (Fig. 3.3; 4B). These anticlines were
developing during deposition of the Annot turbidites, causing syn-depositional rotation of

the basin depocenter towards the west (Fig. 3.3) (e.g., Salles et al., 2014).
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Chapter 3:The stratigraphic evolution of onlap in siliciclastic deep-water systems: autogenic
modulation of allogenic signals

E-W-oriented Pyreneo-Provencale structures also affect the Annot Basin structure,
with the northern extent of the basin formed by the Aurent anticline (Fig. 3.3). This
structure forms a gently southward-dipping terminal slope (e.g., McCaffrey and Kneller,
2004). More minor basin-floor relief may have been formed by the E-W Fugeret anticline,
which lies between the Rouiane fault zone and the Aurent anticline (Fig. 3.3) (Salles et al.,
2014). These E-W-oriented structures show little evidence of major syn-depositional
movement due to compressional deformation being dominantly driven by the SW-directed

Alpine orogeny during the Eocene and Oligocene.
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Figure 3.4: A) Dip and B) strike field sketches of the stratigraphy and structure of the Annot Basin.

Logged localities are shown as red traverses in part A.

72



Stratigraphic evolution

The Annot Basin has the same transgressive Cenozoic foreland-basin stratigraphy
as is seen across the western Alps (Figs. 3.2, 3.3) (e.g., Sinclair, 1997), with Oligocene
shallow-marine limestones of the Calcaires Nummulitique overlain by deep-marine marls
of the Marnes Bleues. The Marnes Bleues records the deepening of the basin, with
foraminifera suggesting water depths of ~ 100 m at the base of the succession, to ~ 800 m
by the end of deposition (Mougin, 1978). Supply of siliciclastic sediment began abruptly in
the Late Eocene (35.2 Ma) as the Corsica-Sardinia massifs were uplifted via subduction-
related back-thrusting towards to the south (Fig. 3.2) (e.g., Stanley and Mutti, 1968; Apps,
1987). This resulted in a depositional shift from the marls of the underlying Marnes Bleues,
into south-to-north dispersing clastic sediment gravity flows of the Gres d’Annot. An
upwards coarsening trend in the Gres d’Annot suggests progradation of the clastic system,

most-likely related to fan-delta advance (Fig. 3.3) (e.g., Puigdefabregas et al., 2004).

During early clastic deposition the Annot Basin was located on the western side of
a distal submarine fan extending over the foreland basin, with flows entering the basin
from syncline-bounded fan deltas to the south (Fig. 3.2) (e.g., Stanley, 1980; Sinclair, 2000;
Joseph and Lomas, 2004) and being dispersed northwards through relay ramps in the
Rouaine Fault Zone (Fig. 3.3) (Joseph and Lomas, 2004; Salles et al., 2014). This early
deposition is represented in the Annot Basin by low-density turbidites, often referred to as
the Marnes Brunes Inferiérures (e.g., Stanbrook and Clark, 2004), which form the distal
equivalent of the Gres d’Annot. The lowermost Gres d’Annot member, termed Le Ray
(Puigdefabregas, 2004) or the A Member (Du Fornel et al., 2004), onlaps both the
underlying Marnes Brunes and Marnes Bleues slope (Fig. 3.3). Early flows were confined
by the Braux Fault to the west, a combination of the Braux Fault and the Fugeret anticline
to the north, and the Melina anticline to the northeast (Salles et al., 2014). The sediment
entry point shifted throughout deposition of the Grés d’Annot, with a more easterly Late
Eocene entry point suggested for these early flows, as evidenced by an up-stratigraphy
rotation of paleocurrents from NE- to NW-directed (McCaffrey and Kneller, 2004; Salles
et al,, 2014). Alternatively, this may be an apparent repositioning of the sediment entry
point as the basin depocenter itself migrated gradually westward due to Alpine
compression (Salles et al, 2011; 2014). This deformation is believed to have been
continuous throughout the fill of the basin; however, the apparent rate of deformation is

suppressed in the Grés d’Annot due to the higher depositional rates associated with
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gravity-flow deposition (Apps et al. 2004). The remaining Grés d’Annot members were
confined by the major Melina (east), Puy du Rent (west) and Aurent anticlines (north) as
the topography of the Braux Fault and Fugeret Anticline was healed relatively early in the
Oligocene (Fig. 3.3) (Salles et al., 2014).

The basin gradually filled throughout the early Oligocene, with contemporaneous
deposition occurring in the parallel Grand Coyer sub-basin to the northeast (Salles et al.,
2014). Once the basin was largely filled, the Aurent Anticline ceased to terminally confine
flows, and flows bypassed the Annot Basin into the Grand Coyer and Chalufy sub-basins
(Fig. 2) (e.g., Apps, 2004; Salles et al., 2014). Few channel fills are seen within the Gres
d’Annot succession, and the depositional architecture is interpreted as being predominantly

sheet-like (Apps, 1987).

3.4 Data and methods

The dataset comprises 50 (581 m cumulatively) sedimentary logs collected along
sections predominantly oriented oblique to depositional-dip along the eastern margin of
the Annot Basin (Figs. 3.3, 3.4A, 3.5) (Appendix A). Logs were collected at 1:10 scale, and
individual beds were walked out at outcrop where possible (100s of metres) (Figs. 3.6, 3.7).
Higher resolution 1:2 scale logs were collected from some beds approaching onlap to
better capture facies transitions near the slope. Logs within thin-bedded facies were
collected at a 1:5 scale to allow accurate representation of their thicknesses and structures.
Samples of individual facies and individual beds were collected in order to quantitatively
constrain lateral grain-size and matrix changes. 104 paleocurrent measurements were

collected (Fig. 3.5), with 2D paleocurrent measurements qualitatively noted.

Margin correlation

Sedimentological contacts between the discrete members of the Gres d’Annot from
the geological maps of Puigdefabregas et al. (2004), Du Fornel et al. (2004), and Salles et al.
(2014) were ground-truthed and compared to observations made by this study (Fig. 3.3).
The observations of stratigraphic contacts made during this study most closely agree with
those made by Puigdefabregas et al. (2004); therefore their geological map was used for
placement of sedimentary logs within members and for the intra-member correlation of
sedimentary logs (Figs. 3.5, 3.6). This allows facies transitions across the basin to be

assessed both spatially and temporally. Where member boundaries are unclear due to the
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resolution of the geological map (as boundaries converge at pinchout) the top of individual
members is defined by either abrupt facies changes, commonly an abrupt coarsening and
thickening of event beds, or lateral relationships and correlations (Fig. 3.5). An attempt has
been made to reconcile the nomenclature used by Puigdefabregas et al. (2004) and Salles et

al. (2014) to enable comparisons to be made between the two (Fig. 3.3).

Detailed correlations of the Le Ray member are based on the identification of key
surfaces, such as onlap surfaces, and walking out of individual beds (Fig. 3.6). Where beds
could not be walked out, units were correlated based on the methodology of Prélat et al.
(2009) for the identification of the hierarchical elements that builds lobes, e.g., beds, lobe
elements, and lobes. This methodology uses the thicknesses of fine-grained intervals and

vertical facies transitions as indicators of lobe evolution.

Figure 3.5: Dip-obligue correlation panel along the eastern margin of the Annot Basin. No horizontal scale.
Localities and panel orientation are shown in Fig. 3. Members have been correlated based on published maps and
lithological observations. Paleocurrent data are associated with one sedimentary log or series of logs from one locality.
The vertical thickness represents the exposed stratigraphy along the correlated margin (see Fig. 3 for location) and
does not represent the accommodation of the entire basin, which had a westward-migrating depocenter. T'his
migration is represented in the eastern exposures by decreasing member thicknesses through time. 1t should also be
noted that due to the obligne nature of the correlation the margin position is a representation of the relative

confinement at the member scale and does not indicate onlap angle.
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3.5 Results

Facies associations

Facies associations (FA) have been interpreted based on the dominant lithofacies
(LF) and depositional features of a given succession (Table 1). The dominant lithofacies
has been described and interpreted within each facies association in order to justify their
placement in that sub-environment. The lobe sub-environments of Spychala et al. (2017)
are used because they best fit the observations made in this study (Figs. 3.8, 3.9). The onlap
geometry of each lithofacies, and therefore the inferred onlap geometry of the facies
association in which that lithofacies dominantly occurs, is summarized in Table 1. Facies
associations are presented in the following section from proximal to distal positions on the

lobe, in descending stratigraphic order and, broadly, in descending order of thickness.

FA 1 Lobe-axis

Observations: Facies association 1 is composed dominantly of one lithofacies:
thick-bedded (0.5 - 2 m) sandstones (LI 1A) (Figs. 3.10A, B, E), with thin-bedded (0.01 m
- 0.5 m) sandstones (LF 1B) and medium-bedded sandstones (0.1 - 0.8 m) (LF 3)
commonly associated. LF 1B is composed of medium- to cobble-grade (most typically
coarse-grained), pootly sorted, massive sandstones (Fig. 3.10B) and is less prevalent than
LF 1A. Individual beds have erosional bases, often with groove, flute, and tool marks, and
irregular tops. Beds are often lenticular, thickening and thinning from < 10 cm before
pinching out over tens of meters. The beds often occur within successions of medium-

bedded sandstones (LF 2) below packages of LF 1.
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Lithofacies

Description

Interpretation

Facies Association

Onlap Geometry

Thick-bedded
sandstone (LF 1)

Forms 1 - 20 m amalgamated
packages or 0.5 - 2 m beds,
Medium - granule grain size. Flat
or erosional bed bases and flat
bed tops. Mostly structreless with
some planar laminae. Often
contains mud clasts (<5 cm) and
soft-sediment deformation, e.g.

flames and dishes.

Rapid aggradation beneath a
highly

concentrated  flow.

Planar-spaced laminae

indicate traction-carpet
deposition  (semsu  Lowe,
1982).

Lobe axis (FA 1)
Lobe off-axis

Abrupt termination

High-density ~ flows  deposit
abruptly at counter-slope due
to loss of capacity, compared to
lower-concentration flows with
otherwise similar flow
properties (e.g. Hiscott, 1994).
The slope may be draped by
deposition from the overriding

and dilute tail of the same flow.

Medium-bedded
sandstone (LF 2)

0.1 - 0.8 m beds. Fine - coarse
grain  size. Flat or weakly
erosional bed bases and flat or
convolute bed tops. Flutes and
grooves on bed bases. Sporadic
granules sometimes present and
associated  with  structureless

lower bed divisions. Mostly
normally graded with planar and
convolute laminae. Ripples at bed

tops.

Presence of flutes, normal
grading, and  tractional
structures indicates
deposition from a dilute
turbidity current. These beds
are interpreted as medium-
density turbidites due to
their often structureless basal
divisions and thicknesses

greater than 10 cm.

Lobe off-axis (FA 2)
Lobe axis

Proximal fringe

Abrupt to draped termination

More capable of surmounting
topography than higher-density
flows because they are mote
able to maintain turbulent
energy while flowing up the
counter-slope (e.g., Bakke et al.,
2013; Eggenhuisen et al. 2017).
Wide variety of sediment
concentrations in these flows
causes drape to extend from
meters to tens of meters up the

slope.

Hybrid beds (LF 3)

0.1 - 1.2 m bipartite or tripartite

Beds containing deposits of

Proximal fringe (FA 3)

Abrupt to draped termination

beds. Lower medium-coarse | both turbulent and | Lobe off-axis Debritic or argillaceous middle
sandstones (division 1) overlain | transitional/ laminar flows | Distal fringe divisions are highly
sharply or loaded by argillaccous | interpreted as hybrid beds | Lobe axis concentrated  so  terminate
sandstones (division 2). | (sensu Haughton et al. 2009). abruptly. Draping of the middle
Argillacecous  sandstones  often | Flow transformation occurs division may occur if the slope
have a sheared fabric. Cleaner, | through increasing is shallow enough to allow run-
often finer, and tractionally | concentration of fines during up of the debritic middle
reworked sandstone sometimes | run-out (e.g., Kane et al division. The turbulent lower
present capping these divisions | 2017) or through forced part of the flow may drape the
with a sharp or foundered base | deceleration (Barker et al. slope and amalgamate with the
(division ~ 3). Decimeter scale | 2008; Patacci et al. 2014). overlying sandstone or deposit
organic  material  sometimes abruptly if high-density.

present in middle division.

Thin-bedded 0.01 - 0.1 m siltstones and fine | Fine grain size, thin event | Distal fringe (FA 4) Draped termination

sandstone (LF 4)

sandstones. Parallel and

convolute laminae, normal

grading. Flutes rarely preserved.
show

Ripples

occasionally

opposing paleoflow directions.

beds, and abundance of
tractional structures indicates

that  these beds were

deposited by low-
density/concentration
turbidity current and are

therefore interpreted as low-

density turbidites.

Proximal fringe

Lobe off-axis

Low-concentration flows are
less affected by changes in
slope angle and are thus able to

surmount  basin

topography
and drape topography for
substantial distances up the
counter-slope (e.g., Muck and
Underwood,  1990).  Low-
density turbidites ate therefore
able to dominate much of the
sediment thickness on the
upper parts of the confining

slope.

Table 3.1: Key lithofacies, facies associations, and onlap geometries seen in the Grés d’Annot of the Annot Basin.
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Figure 3.8: Correlation panel from the Col du Fa onterop. The thinner-bedded low-density turbidites drape

and heal the topography of the Marnes Blenes basin margin onlap surface, while the higher-density ana

thicker-bedded turbidites initially onlap against these distal deposits, forming an intra-formational onlap

surface. Red lines on the horizontal axis indicate exact log position. 1og key on Fig. 6.
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The thick-bedded LF 1A sandstones are medium-grained to granular sandstones
with bed bases that are flat (at exposure scale) or erosional (Figs. 3.7, 3.11B). Flat bases are
most prominent when overlying mudstones, while erosional bases are most commonly
expressed as amalgamation surfaces (Fig. 3.9B, C, D). Both bedding-parallel and erosional
bases are associated with decimeters of deformation in the underlying beds. This
deformation obscures the primary depositional characteristics of the underlying beds,
making interpretation of the deformed beds difficult. Bed bases with steeper dips than the
bed top are observed at pinch-out of these beds (Fig. 3.11B), with bed bases steepening
towards the pinch-out. Amalgamation surfaces are identified by mudstone-clast-rich rugose
hotizons, abrupt grain-size breaks, and truncated trace-fossil burrows. Bed tops ate flat and
exhibit little depositional relief. Beds are typically structureless, with rarely preserved faint
parallel lamination and tractional structures, and ungraded, though some beds show weak

normal grading (Figs. 3.7, 3.9B, C, D).

Interpretations: The presence of erosional bed bases with tool marks and grooves
indicates that LF 1A beds were deposited by high-concentration flows that initially carried
large clasts and other detritus at the base of the flow. Superimposed flute marks, normal
grading, and tractional structures are indicative of evolution to a less concentrated, more
turbulent flow. The rarity of tractional structures and commonly massive and poorly sorted
beds, however, indicates that these beds were deposited rapidly (sezs# Lowe, 1982). This is
most likely due to a reduction in flow capacity (sensu# Hiscott, 1994), preventing the
formation of grading and the preservation of bedforms. These turbidites are therefore
interpreted as high-density turbidites (sens# Lowe, 1982). The presence of deformation
structures beneath these flows has been attributed to high shear stresses acting on the
seabed (e.g. Clark and Stanbrook, 2001; Puigdefabregas et al. 2004). These laterally
extensive (up to 1 km where outcrop allows) high-density turbidites, which are commonly
amalgamated, are interpreted to be analogous to lobe axis deposits observed elsewhere

(e.g., Prélat et al. 2009).

The coarse grain size and thin-bedded nature of LF 1B suggests that these beds
were deposited as a coarse-grained lag in a bypass-dominated part of the system. The
lenticular geometry suggests that either i) flow energy, and therefore bypass potential, was
not homogeneous laterally within the flow or ii) erosion by later flows or waxing of the

flow (Kane et al., 2009), scoured the bed top (Fig. 3.10B). Because this lithofacies is
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confined stratigraphically to sequences underlying thick-bedded and amalgamated
sandstones of similar grain sizes, they are inferred to be laterally related. These lags are
interpreted to represent a mostly bypassing equivalent of the thick-bedded sandstones in

the lobe axis.

DISTALFRINGE— 7= _=* N

FRONTAL FRINGE

PROXIMAL FRINGE

LATERAL FRINGE

OFF-AXIS
I
AXIS 4
UNCONFINED |-PTHEBMDTHDT|  -oNFINED
40 x 10 km 10 x 5 km

Fignre 3.9: A) Nomenclature comparison between unconfined lobe sub-environments
(Spychala et al. 2017) and B) confined lobe sub-environments. The only difference is thar
hybrid beds are more prevalent in lateral positions in confined systems due to rapid flow
deceleration and transformation at basin margins. LDT = low-density turbiditee HEB =
hybrid (event) bed; MDT = medium-density turbidite; HDT = high-density turbidite.
Unconfined and confined lobe dimensions are from Prelat et al. (2070).

FA 2: Lobe off-axis

Observations: Facies association 2 is composed primarily of normally graded
medium-bedded (0.1 - 0.8 m) fine- to medium-grained sandstones (LI 2) with flat to
slightly erosional bed bases and flat bed tops (Figs 3.7, 3.10A, 3.12). Flutes and grooves are
often seen at bed bases. Ripples at bed tops commonly show opposing paleoflow
directions to those measured from flutes and grooves on individual event beds (Fig. 3.5).
Beds pinch out abruptly towards the basin margin, and often can be traced away from the
onlap surface to a parent thick-bedded sandstone (Fig. 3.7). In the uppermost stratigraphy

of the basin, LF 2 commonly has highly irregular bed tops with abundant tractional
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structures, such as climbing ripples and convolute lamination (Figs. 3.10E, 3.12). These

beds are termed LF 2B.

Interpretations: The presence of flutes, normal grading, and tractional structures
indicate that the LF 2 beds were deposited by waning, turbulent flows which were able to
rework the aggrading deposit (Bouma, 1962). This suggests that these flows were more
dilute than the parent flows of the thick-bedded sandstones (LF 1). These medium-bedded
sandstones are therefore interpreted as medium-density turbidites and are differentiated
from low-density turbidites by bed thicknesses being greater than 10 cm and a coarser grain
size. These medium-density turbidites also have a thicker massive interval at their base
compared to low-density turbidites. Opposing paleocurrent directions within event beds is
characteristic of flows encountering topography (e.g., Kneller et al., 1991), indicating that
many of these beds were deposited close to a basin margin. Coarser, denser parts of the
flow may be more strongly influenced by topography than the upper more dilute part of

the same flow (Bakke et al., 2013).

The finer, better sorted and thinner-bedded nature of this lithofacies compared to
thick-bedded sandstones indicates that these beds were deposited beyond the axis of the
lobe (off-axis) (Prélat et al. 2009; Bell et al., 2018a) (Fig. 3.8). LF 2B is interpreted as
representing flows that were deposited close to the basin margin or possibly within slump
scars on the basin margin. Bypassing flows deflected by the margin or trapped in scars
caused complicated oscillatory-flow patterns to develop which deformed the aggrading
deposits (Pickering and Hiscott, 1985; Tinterri et al. 2016; Cunha et al. 2017). An example
of this can be seen at Téte de Ruch, where this facies dominates a ~ 10 m thick scar fill
(Puigdefabregas et al. 2004) and is overlain by thin beds showing simple uniformly directed
ripples and plane-parallel lamination (Figs. 3.5, 3.11C). These thin beds were deposited
over the scar fill where flows were relatively unconfined, allowing more uniform and

waning flow deposition to dominate.

Figure 3.10: Sedimentary logs with facies and paleogeographical interpretations. Each member contains
elements of each lobe sub-environment; however, there is an increasing prevalence of bigher-density deposits
upwards through stratigraphy. This pattern is interpreted as representing overall lobe progradation. Colored

bars next to logs represent facies on sub-environment key.
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FA 3: Proximal fringe

Observations: Facies association 3 is dominated by medium- to thick- bedded (0.1
m - 1.2 m) bipartite or tripartite event beds (LF 3) (Figs. 3.9, 3.11C, D, G). These beds are
composed of a lower division of medium- to thick-bedded sandstone (LF 1 and LF 2) with
an irregular top which is loaded and/or eroded into by an ovetlying atrgillaceous sandstone
(Fig. 3.10D). The middle division is an argillaceous sandstone, pootly sorted and often
deformed, which appears as a sheared fabric (Fig. 3.10D). The argillaceous sandstone can
either contain clasts of the underlying sandstone or be clast-poor. Organic matter (< 70 cm
in length) may be present in this bed, with organic-rich sandstones typically thicker than the
more argillaceous sandstones. Elongate organic matter is usually aligned with its long axis

approximately parallel to paleoflow recorded on the bed base (Fig. 3.10C).

Argillaceous sandstones, which are rich in cleaner sandstone clasts, commonly
occur where the lower, cleaner sandstone is coarser-grained; thus most sandstone clasts
seen tend be coarse-grained than the argillaceous matrix. This deposit can show variable
sand-to-mud ratios. Higher sand contents within this middle division are associated with
increased prevalence of lamination, with centimeter-scale layering (mud-concentrated
laminae) sometimes evident, and higher mud contents associated with more sheared and
poortly sorted deposits. Both of these divisions may contain coarse-sand to granule-size
quartz grains supported within the matrix.

Overlying this argillaceous sandstone, medium-bedded, often muddy sandstone
may occur, although it is sometimes difficult to assess whether this sandstone is part of the
underlying event bed or represents a separate event bed (Fig. 3.10D). This sandstone has
an irregular base and can show loading and foundering into the underlying argillaceous
sandstone (Fig. 3.10D). The bed top is typically flat or mounded. Approaching basin
margins these beds can be seen to transition laterally from thick-bedded sandstones (Fig.
3.13A, B).

The middle division of the bed may pinch out between the underlying and
overlying sandstones, which then amalgamate at the onlap surface (Fig. 3.13C), forming a
complicated and often muddy pinch-out (Fig. 3.14). Stratigraphically this lithofacies
dominantly occurs following the thin-bed-dominated sequence and underlying the
medium- to thick-bedded sandstones (Fig. 3.9).

Interpretations: The basal and upper sandstones within these bipartite or tripartite

event beds are interpreted as either high-density or medium-density turbidites. The
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massive, pootly sorted, and mud-rich nature of the division encased by these turbidites is
interpreted as being caused by en-masse deposition of a laminar and cohesive flow (e.g.,
Middleton and Hampton, 1973; Mulder and Alexander, 2001). This bed division is
therefore interpreted as a debrite. The irregular contact seen between these divisions has
been attributed to complex short-wavelength soft-sediment deformation and erosion (e.g.,
Fonnesu et al. 2015). Where the overlying turbidite is relatively thick it is difficult to
differentiate between a debritic or deformed (see LF 1 basal deformation) origin for the
middle division, particularly when the overlying turbidite has foundered into the underlying
division (e.g., Fonnesu et al. 2015). Where the middle sandstone division is slightly cleaner,
with lamination and/or layering, the sandstone is interpreted as having been deposited by
flows transitional between laminar and turbulent and therefore termed a transitional-flow
deposit (Baas et al., 2011; Kane and Pontén, 2012). These tripartite event beds therefore
contain deposits of both turbulent and laminar flow regimes and are subsequently

interpreted as hybrid beds (sezs# Haughton et al., 2003; 2009).
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4

&

Figure 3.11 A) Medium-density turbidite (MDT) at Col du Fa. B) Low-density turbidite (LDT)
onlapping a gravel lag deposit at Téte du Ruch (Lower). C) Organic material in the debritic division o)
a hybrid bed at Le Marc. D) Pinch-out amalgamation zone at Col du Fa. Debritic (Db) ana
turbiditic (T'h) sections can be identified and correlate with thick- and medium-bedded turbidites np-
dip. 1t is difficult to differentiate groups of event-beds in these slope proximal units. E) High
tractionally r-worked LDT. F) Typical thin-bedded LDT facies. G) Siumped thin-bedded turbidites
at Argenton. Fold hinges indicate failure perpendicular to the slope.
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It is suggested that the more organic-rich linked debrites, with decimeter clasts of
terrestrial debris, are derived from flows which originated from events in the hinterland
that carried significant amounts of terrestrial debris into the marine environment (see also
Hodgson, 2009). These beds are therefore deposits from particularly high-magnitude flows;
this may explain their greater average thickness compared with the more argillaceous
hybrid-beds. It is also possible that the organic material was staged for significant periods
of time on the shelf, making terrestrial debris a poor indicator of flow magnitude. The
close association of terrestrial debris and coarse grain sizes in these relatively distal
environments, however, indicates that these beds were the result of high-magnitude or
“outsize” flows that were capable of significant substrate erosion (Fonnesu et al. 2018).

Incorporation and disaggregation of this eroded substrate will have primed these flows for
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Figure 3.12: A) Contact between the thin beds and high-density turbidites at Col du Fa. The high-density
turbidites onlap against the low-density turbidite slope drape at an incidence angle almost perpendicular to
the slope (arrow is paleoflow). B) Example of a high-density turbidite with a wedged base onlapping the
underlying slope drape. Restoring the bed top to horizontal allows a rough estimate of the paleo-slope angle.
C) Scar fill at Téte de Ruch (upper). The higher-density flows either onlap the scar drape abruptly or
transform to low-density turbidites up the counter-slope. D) Laterally continnons hybrid beds at Le Marr.
These beds are interpreted to have been deposited away from the basin margin and cobesively transformed
through distal run-out. 7 e camera lens (black circle) for scale.

rheological transformation (Kane et al. 2017; Fonnesu et al. 2018). LF 1 can be seen to

transform into these hybrid beds over tens of meters approaching the slope, further
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indicating that these beds were highly erosive and prone to rheological transformation,
even in proximal positions, due to forced deceleration against the basin margin (e.g.,
Patacci et al. 2014). The presence of large amounts of erodible and muddy draping
substrate on the basin margin will aid in short-length-scale flow transformation in these

high-magnitude flows (Fig. 3.14) (e.g., Fonnesu et al. 2018).

It is possible that the debritic division of these beds represents high-concentration
turbidity currents hitting the counter-slope, causing intra-basinal slope instability and
failure. The turbidity current will then have aggraded around this failure, represented
depositionally by a sandwiched debrite (e.g., McCaffrey and Kneller, 2001). It is difficult to
differentiate between a flow-transformation or slope-failure origin for the co-genetic
debrite at outcrop; however, the presence of large organic clasts within an identified

debritic division may favor a flow-transformation origin.

Because these beds dominantly underlie the thicker-bedded and more sandy
turbidites of FA 1 and 2, they are interpreted as being depositionally adjacent (sensu
Walther, 1894) (Figs. 3.8, 3.9). An abundance of hybrid beds indicates a more distal lobe
sub-environment compared with the axis and off-axis deposits of FA 1 and FA 2 (e.g,
Hodgson, 2009; Jackson et al. 2009; Kane et al., 2017; Fonnesu et al. 2018). This sub-
environment is termed the lobe fringe. FA 3 is therefore interpreted as being analogous to
lobe-fringe deposition seen in unconfined systems (e.g., Spychala et al. 2017). The lobe
fringe can be further subdivided into a lateral and frontal fringe, with the lateral fringe
having a lower proportion of hybrid beds compared to the frontal fringe (Spychala et al.
2017). In confined settings this definition is complicated because flow deceleration against
lateral slopes cause flow transformations and subsequent enrichment of hybrid beds in the
lateral fringe (Figs. 3.8, 3.15, 3.16, 3.17). This relationship is also evident in the Late
Cretaceous Britannia Sandstones of the North Sea, where flows underwent rheological
transformation against a lateral slope (Lowe and Guy, 2000; Barker et al. 2008). This study
thus uses the general term proximal fringe because the frontal and lateral fringe are
expected to be similar due to the counter-slope causing a prevalence of hybrid beds in both

settings (Figs. 3.8, 3.14, 3.17).
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Figure 3.13: High-resolution log of one medinm-density turbidite approaching onlap at Col du Fa

showing the short length-scale variability seen in these beds.

It should also be noted that particularly erosive flows in the lobe axis and off-axis
also generate hybrid beds at the onlap surface (e.g., Patacci et al. 2014; Fonnesu et al. 2018).
This can make lobe-sub-environment interpretation challenging when adjacent to a steep
basin margin because much of the succession may be margin-affected over short length
scales (tens of metres) (Fig. 3.14) and therefore not represent their primary lobe-scale
paleogeographic position (e.g., Southern et al. 2015). This is enhanced in tectonically active
basins where flow types can be highly variable (e.g., Mutti et al. 2009). Facies back-stripping
may therefore need to be attempted to assess the lobe-scale sub-environment (Fig. 3.16).
These short-length-scale margin effects and attempts at back-stripping are summarized in

Figure 3.16 and 3.17.
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Figure 3.14: A) Hybrid-bed evolution approaching topography at Argenton. B) Hybrid evolution at Téte
de Ruch (lower) C) Hybrid-bed evolution at the Téte de Ruch (upper). The complex: interaction between the
debritic and turbiditic intervals are suggested to result from either differential interaction with the slope
between rheologically distinet flow phases or erosion at the onlap surface. Letters in blacked boxes =
correlated bed label. 1.og ey on Fig. 6.

FA 4: Distal fringe

Observations: Facies association 4 is dominated by thin-bedded (0.01 — 0.1 m)
siltstones to fine-grained sandstones (LF 4) that form laterally continuous event beds (Figs.
3.7, 3.11A, 3.14). Parallel and convolute lamination is common (Fig. 3.10F). Beds are
normally graded, with ripples common on bed tops (Fig. 3.10F). Ripples may show

multiple and opposing paleocurrent directions within single beds. Beds tend to pinch out
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over tens to hundreds of meters towards the basin margin (Fig. 3.15), with amalgamation
of event beds sometimes observed towards the onlap surface, causing local bed thickness
increases in a regional thinning trend. Slumping and folding of beds (LF 5) is evident in this
FA, particularly immediately underlying the abrupt transition to dominantly medium- and
thick-bedded sandstone sequences (Fig. 10G). Fold-axis measurements indicate that
deformation was both oblique and perpendicular to paleo-slopes. Stratigraphically, these
beds immediately overlie the Marnes Bleues, forming a distinct sequence that significantly

drapes the Marnes Bleues slope (11A). This lithofacies becomes less common up

stratigraphy (Fig. 3.9).
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Figure 3.15: Outerop sketch from the Col du Fa locality. A) Low-density turbidites drape the slope and are
onlapped by hybrid beds and bigher-density turbidites. B) Flow transformation can be seen to occur in the
proximal fringe deposits over 10 - 15 m approaching the onlap surface to the NW, resulting in complex
amalgamation gones at pinch-ont (see Fig. 10D for pinch-out detail).
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Interpretations: The fine grain-size, abundance of tractional structures, and
dominance of thin beds within LF 4 indicates deposition from dilute, low-density turbidity
currents (sensu Lowe, 1982). The narrow grain-size range (dominantly silt) of these slope-
draping beds is numerically predicted because of the quadratic decrease in settling velocity
of silt and mud and the consequent increase in likelihood of flow inflation far above the
initial flow depth in silt- and mud-rich flows (Dorrell et al. 2019). Because these beds are
able to drape the existing relief they are suggested to have healed much of the initial relief
present on the Marnes Bleues slopes (Figs. 3.7, 3.11A). Slumping in these successions (LF
5) is interpreted to represent slope failure on the steep basin margins (Fig. 3.10G).
Progressive deformation and seismicity along the Alpine thrust front is suggested as the
primary reason for slope failure (Fig. 3.2). Failure scars may contribute to some of the
heterogeneity seen within the overlying medium- and thick-bedded sandstones by creating

a rugose topography high on the slope (Fig. 3.11C).
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Figure 3.16: Example of correlated low-density turbidites approaching the Col du Fa basin

margin. Very little facies variation is seen in these beds and thinning rates are lower than those

seen within thicker-bedded turbidites approaching the basin margin.
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Figure 3.17: Summary logs showing facies transition approaching pinch-out toward basin margins for given lobe sub-
environments and their dominant facies. The right-hand petrographic images are taken from representative beds in the
Annot Basin approaching onlap. The corresponding letter (white text in black box) on the logs indicates the point in
the bed where the sample was taken. Onlap to right.

The lateral continuity, fine grain-size and thin-bedded character of the thin beds is
consistent with both levee deposition and lobe-fringe deposition. Because of the few long-
lived channels identified and the low stratigraphic position of these beds in a prograding
lobe (Fig. 3.9), they are not interpreted to be levee deposits, but are instead attributed to
the distal fringe of a submarine lobe on the basin floor (e.g., Boulesteix et al. 2019a, b) (Fig.
3.8), which caused termination of Marnes Bleues carbonate deposition. This is supported
by the published paleogeographic position of the lowermost Gres d’Annot (Fig. 3.2) (Apps
et al., 2004; Joseph and Lomas, 2004; Salles et al., 2014). The relative lack of hybrid beds in
the LF5 sequence also supports a distal lobe fringe interpretation (Figs. 3.8, 3.9A, 3.13)
(Spychala et al., 2017).
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Stacking patterns

Confined basins have previously been associated with sheet-like deposition, where
incoming flows are entirely confined by the basin margins, resulting in tabular stratigraphy
with little or no autogenic compensational stacking (e.g., Sinclair and Tomasso, 2002).
Numerical studies (Dorrell et al. 2018), subsurface studies (e.g., Beaubouef and Friedmann,
2000), and outcrop studies (e.g., Spychala et al. 2016; Bell et al. 2018b; Liu et al. 2018),
however, have shown the stacking-pattern complexity that may arise in basins that display
variable degrees of confinement. This study uses data from the lowermost member of the
Gres d’Annot, the Le Ray member (Figs 3.5, 3.6), to build on these studies. Le Ray
(Puigdefabregas et al., 2004), or member A (Du Fornel et al. 2004), is suggested to have
been fully confined by the basin margins during its deposition (Callec, 2004; Salles et al.
2014) through onlap mapping and thinning trends.

Unit 1: This unit comprises a sequence of thin-bedded low-density turbidites (LF
4) overlain abruptly by medium- and thick-bedded high-density turbidites (LF 1 and 2).
These thick-bedded sandstones correlate with a thick sequence of thin-bedded turbidites ~
800 m to the NW adjacent to the Braux Fault footwall (Figs 3.3, 3.6). This transition is
caused either by flow over-spill across the paleobathymetry of the Braux Fault or draping
of the lower-density part of the flow up the Braux Fault topography. Correlation of this
unit toward the NE is hindered by lack of exposure; however, it is possible that the distal

Unit 1 correlates with some of the early Unit 2B deposition (Fig. 3.0).

Unit 2: Proximal Unit 2 is characterized by a thick 33 m amalgamated sandstone
body interpreted as being deposited by high-concentration turbidity currents. Indicators of
erosion, such as scours and decimeter-scale mud-clasts, indicate that this was a region of
significant bypass (e.g., Stevenson et al. 2015) and is interpreted to represent the lobe axis
(FA 1) through Le Ray deposition. Down-dip this unit has been subdivided into Unit 2A
and 2B based on facies and stacking. Unit 2B is composed of thin-bedded turbidites that
drape the frontal confinement of the early Annot Basin and stack aggradationally (Fig.
3.11A). This confinement was caused by a combination of the basin closure due to the
NW-SE Melina anticline, the E-W Fuguret anticline, and the NE-SW Braux Fault (Fig. 3.3).
Unit 2A represents an abrupt transition into thicker-bedded sandstones that pinch out
against the underlying Unit 2B. These sandstones can be subdivided into various lobes

based on the correlation of intervening packages comprising low-density turbidites (LEF 4)
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overlain by hybrid beds (LF 3), medium-density turbidites (LF 2), and amalgamated high-
density turbidites (LF 1), which are interpreted to represent the sequential stacking of
distal-fringe (FA 4), proximal-fringe (FA 3), off-axis (FA 2), and axis deposits (FA 1).
These lobes represent the depositional products of the bypassing flows from the proximal

thick sandstone body, forming the lobe axis.

The axis of each of these lobes steps farther into the basin, suggesting allogenic
progradation, which likely occurred in response to increasing sediment flux from the
uplifting Corsica-Sardinia hinterland toward the south (e.g., Apps et al. 1987; Euzen et al.
2004). This pattern is not uniform, however, and a degree of compensational stacking is
clearly visible, with the axes of successive lobes (represented by amalgamated high-density
turbidites) overlying the fringes of underlying lobes, which represented lows on the
seafloor (e.g. Deptuck et al. 2008; Prélat et al. 2009). These stacked lobes could also
represent lobe “fingers” that were focussed between the lows of the previous axial deposits
(e.g., Groenenberg et al. 2010). In this case the apparent basinward stepping of the Le Ray
lobes may be autogenically-driven, as flows are focussed between the lows and build
passively into the basin. This explanation may operate in tandem with allogenic
progradation, particularly during early deposition, due to the prevalence of these finger-like
geometries in the basal stratigraphy of lobe complexes (e.g., Prélat et al. 2009; Groenenberg
et al. 2010). These indicators of compensational stacking are at odds with the prevailing
suggestion that basins generically described as “confined” can be assumed to have a sheet-
like architecture, and fit with the recent work indicating that lobes deposited within basins
with varying degrees of confinement are characterized by more complicated stratigraphic

relationships (e.g., Marini et al. 2015; Bell et al. 2018b; Liu et al. 2018).

The presence of thick and coarse sandstones in distal positions has also been
described in subsurface datasets of submarine lobes and lobe elements and has been
attributed to flow stripping of the upper dilute parts of flows over the basin’s confining
topography, leaving behind the coarser parts of the flow (e.g., Marini et al. 2016a,b; Jobe et
al. 2017). This process may also contribute to the preservation of the thick and abruptly

terminating sandstones within Unit 2A of the Le Ray member.

Unit 3: This unit has been differentiated because it cannot be reliably correlated to

another unit. It is possible that Unit 3 represents the distal expression of the upper parts of
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Unit 2, however the lack of exposure between the proximal and distal parts of the upper Le

Ray prevents reliable correlation.

Alternative Interpretations: The observed intra-formational onlap against the
low-density fringe (Unit 2B) at the Col du Fa locality is likely caused by the inferred
proximity of the basin margin. An alternative explanation for this stratigraphic relationship
may be the presence of a large erosional feature, such as a scour, at the Col du Fa margin.
Such scours are interpreted higher in the basin stratigraphy at Téte du Ruch (e.g,
Puigdefabregas et al. 2004), and show the same intra-formational onlap relationship (Fig.
3.11C). Decameter-thick scour fills are also suggested to be present in the Gres d’Annot at
Peira Cava (Lee et al. 2004). The scour would have created accommodation space to be
filled by the incoming flows, resulting in the onlap geometries described by this study.
Exposure limits further analysis of this problem, however, a scour interpretation is not
believed to affect the underlying principles of this study as the low-density turbidites still

drape the scour and are onlapped by the later higher-density turbidites.
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Another explanation for the observed intra-formational onlap may be that the low-
density fringe (Unit 2B) was tilted (e.g., Salles et al. 2014) and subsequently onlapped by
higher-density flows when the basin was relatively static or depositional rates were higher,
resulting in the wedge-shaped geometry observed (Apps et al. 2004). Unit 2B may therefore
represent the distal extents of early Le Ray (i.e., Unit 1), while the onlapping Unit 2A is
either more proximal and late-stage Le Ray or early La Barre (i.e., Unit 3) (Figs. 3.3, 3.5).
Differential compaction between the basin center and the basin margin may have also
acted to enhance the tilting effect (Sinclair, 1994). The inability to walk out individual units
between outcrop localities again makes further analysis of this problem difficult. If
tectonism or differential compaction is the reason for the observed relationship, then run-
up of the low-density turbidites that characterize Unit 2B would have acted to exaggerate
the intra-formational onlap that was caused by tilting, and the underlying principles of this
study are maintained. Unit 1 would therefore be analogous to the ponded aprons identified
in intra-slope basins of the Gulf of Mexico, while Unit 2 would similar to a perched apron

(Prather et al. 2017).
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3.6 Turbidity-current run-up and onlap geometry
Sediment gravity flows are able to deposit high on confining slopes through flow
run-up and/or inflation (e.g., Muck and Underwood, 1990; Lamb et al. 2008; Dotrell et al.
2019). The distance a turbidity current runs up topography is termed the run-up height (H)
and, in its simplest form (following Straub et al. 2008), can be represented by the ratio

between kinetic and potential energy within a flow,

2
) H=h+—LL
( ) (Pc—Pa)2g

Where /» = flow thickness, U = flow velocity, p.= bulk density of the flow (composed of
quartz at 2650 kg m™), p, = density of the ambient water (seawater at 1020 kg m™), g =
acceleration due to gravity (9.81 m s™). In order to assign a single value for sediment
concentration there is an assumption that there is no density stratification within the flow.
A 30-m-deep channel-form at Chambre du Roi (Sinclair, 2000) has been used as the basis
for estimating minimum flow height. This is slightly arbitrary but serves the purpose of this
thought-experiment. In order to correct for channel-related superelevation, this flow height
has been multiplied by 1.3 (see Mohrig and Buttles, 2007), giving a 4 value of 39 m. This
height represents the minimum height of the flow at the lobe apex, disregards compaction,
and is assumed constant. It should be noted that due to a lack of flow height proxies
preserved at outcrop this value is used purely to demonstrate the underlying principles of
the model, i.e., the model does not attempt to fully reconstruct the turbidity currents
entering the Annot Basin. The depth-averaged flow velocities used range from 5 m s to
0.5 m s™. The upper limit of 5 m s is derived from the maximum flow velocities (4 - 6 m s
") reached by sand-rich flows in the Monterey Canyon (Symons et al. 2017), while the lower
limit of 0.5 m s™ is derived from average measurements of finer-grained flows in the Congo

Canyon (Azpiroz-Zabala et al. 2017b).

The Annot system is sand-rich; therefore the faster Monterey flows are likely the
most analogous, at least close to the input. Flow velocity will decrease with decreasing
concentration, making the use of a constant velocity problematic. This is suggested to be
less important for small and confined basins, such as the Annot Basin, where flows may be
prevented from significant velocity decay between the axis and pinch-out. If velocities do
decay significantly, then plotting single velocity values through the height of an individual
flow will be required; for example, the 5 ms” and 10% concentration basal part of a

hypothetical flow will run-up 9.2 m above the flow height, while its 1 ms" and 0.1%
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concentration tail will run-up 32 m above the flow height. This decameter scale difference
may explain the ~ 15 m of slope drape at Col du Fa (Figs. 3.6, 3.8). This parameter is
further complicated by the possible presence of low-velocity dense basal layers within
highly-concentrated stratified flows (e.g., Stevenson et al. 2018). Turbulence is suppressed
in these basal layers; this reduces velocity and run-up heights, resulting in the increased
likelihood of an abrupt pinch-out of the sand-rich basal layer and bypass of the upper and
low-concentration parts of the flow. The wedged high-density turbidites identified at onlap

by this study (Fig. 3.11B) may be the depositional products of such basal layers.
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Figure 3.19: A) Run-up height versus flow sediment concentration for flows of varying velocities. Flows
with high concentrations are less able to run up topography than low-concentration flows if all other
parameters are equal. B) Run-up height versus the angle of incidence between the flow and the slope for

flows of varying velocities. Lower angles of incidence cause higher run-up of flows. C) Schematic diagram
showing the relationship between frontal and lateral onlap (modified from Al A’Jaidi et al. 2004).

By varying flow concentration in equation (1), a clear trend is developed, with lower
sediment concentrations resulting in greater run-up heights (Fig. 3.18A). In prograding lobe
systems turbidity currents with lower sediment concentrations (well below 10%), forming
low- or medium-density turbidites, are typically found in the distal or basal stratigraphy and
flows with higher sediment concentrations (> 10%), forming high-density turbidites, are
typically found in the proximal or upper stratigraphy (e.g., Hodgson et al. 2006, 2009; this
study). This therefore suggests that earliest turbulent flows into a receiving basin should
have the greatest run-up heights, assuming all of these flows are of similar thickness, with
run-up heights decreasing through time as flows become more concentrated (Fig. 3.18A). It
should be noted that the effect of increasing concentration through time will be
counteracted by increasing velocities, as discussed previously. Suspended-sediment
concentrations of > ~ 8% have been shown to suppress the generation of current ripples
and cause transformation from turbulent to transitional flow, where flows decelerate
sufficiently, forming transitional or hybrid-flow deposits (Baas et al. 2011). This
concentration ( > ~ 8%) has therefore informed the placement of hybrid beds along the x-
axis of the run-up height trend (Fig. 3.18A), giving hybrid beds a similar run-up potential as
high-density turbidites. It should be noted that Baas et al. (2011) emphasize that this value
is dependent on flow velocity, grain size, and sediment composition, and that the
dimensionless Reynolds number is a much better predictor of flow phase. The results of
this analysis fit with facies-dependant thinning rates compiled from 18 outcrop studies by
To6kés and Patacci (2018), with hybrid-beds having 1.3 to 2.8 times higher thinning rates
than turbidites. Data collected in this study also support the compiled data of Tékés and
Patacci (2018), with thinner-bedded turbidites having lower thinning rates than thicker-
bedded turbidites and consequently draping topography (Figs. 3.6, 3.7, 3.15). Similar

thinning trends have been reported from levee sandstones (DeVries and Lindholm. 1994).
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Lateral vs. Frontal Onlap

To assess the run-up variation between frontal and lateral onlap the velocity of the
modeled flow (at 5% concentration) was varied according to the incidence angle of the
flow with the slope. It is assumed that the flow velocity will be at its maximum (5 m s in
this case) in the principal direction of travel, or an angle of incidence of 90" with respect to
the slope, and that the flow velocity will fall to 0 ms™ perpendicular to its axis at an angle of
incidence of 0, i.e., when the flow is running perpendicular to the topography. In reality
there will still be some lateral velocity; however, for the purposes of this simple analysis it is
assumed that this is negligible. The fastest flows occur at an angle of incidence of 90" or
perpendicular to the slope (Fig. 3.18B). These flows therefore run farther up the counter-
slope. Deposits of these flows would pinch out higher up the frontal slope than the lateral
slope (Fig. 3.18B, C). In the 5 ms™ case, for example, the difference in run-up height
between the frontal and lateral part of the flow is 17 m. The difference will be increased in

lower-density flows and reduced in slower flows.
3.7 Discussion

Stratigraphic Evolution of Onlap

Based on the similarity between facies transitions and associations seen in this
confined basin and those in unconfined or weakly confined submarine lobes (Figs. 3.8, 3.9)
(e.g., Hodgson, 2009; Spychala et al., 2016, 2017), and the onlap termination styles shown
by this study to be produced by the parent flows of these facies (Figs. 3.16, 3.17), a
predictable stratigraphic evolution of onlap at confined basin margins is proposed (Fig.
3.19).

Distal Fringe.--Initially, onlap terminations will be characterized by draping of the
slope as low-density turbidites of the lobe fringe are deposited (Figs. 3.17, 3.19). This low-
density turbidite drape is likely to be composed predominantly of silt or mud, because fine-
grained flows are much more capable of flow inflation and deposition high on the slope
(Dorrell et al. 2018). It is also suggested that much of the poorly-exposed hemipelagic
sediment in deep-marine basins is composed of millimeter-scale and centimeter-scale event
beds (Fig. 3.10F) (Boulesteix et al. 2019a, b), and consequently represents the distal lobe
fringe. Lobe-fringe deposition is therefore likely to be more widespread than previously

appreciated (Boulesteix et al. 2019b; Spychala et al. 2019) and results in the healing of
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substantial amounts of basinal topography, forming a dominantly aggradational sequence

of thin beds on the basin margin (Figs. 3.11A, 3.17, 3.19).

Proximal Fringe: Hybrid beds and low-density turbidites of the proximal lobe
fringe are then deposited into the basin as the system progrades (Fig. 3.19). These hybrid
flows are more concentrated and will therefore have lower flow efficiencies when they
encounter the slope, so will be unable to deposit as far up the slope as the underlying low-
density turbidites of the distal lobe fringe (Figs. 3.17, 3.18A). This will cause abrupt intra-
formational onlap of these higher-concentration flows against the underlying lobe- fringe
deposits (Fig. 3.19). In the Annot Basin this is represented by proximal-fringe deposits
wedging out against the underlying distal-fringe deposits (Figs. 3.11A, 3.15). The

abruptness and complex 3D geometry of these terminations is enhanced by the combined
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Figure 3.20: Model for the stratigraphic evolution of flow terminations in a static confined deep-water basin.

It is suggested that the pattern of termination trends may be used to predict the termination style expected at a

given point on the onlap surface. Flow transformation, which increases flow concentration, can result in offlap.

Similarly, bypass of the upper parts of axial flows results in offlap of the deposits of the highly concentratea

basal layers of these flows against the underlying deposits. Concurrent hemipelagic deposition has been ignorea

for simplicity.
potential for hybrid-bed development through long-run-out cohesive flow transformation
(e.g., Haughton et al. 2009), slope-induced flow transformation (e.g., Barker et al. 2008;
Patacci et al. 2014; Bell et al. 2018b), and flow-induced slope failures (e.g., McCaffrey and

Khneller, 2001) (Fig. 3.16). This depositional pattern will be seen in cross sections as a
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progressive migration of termination points towards the basin center (offlap) (Fig. 3.19) or
a reduction in distance between successive onlapping termination points towards the basin
margin. Sylvester et al. (2015) generated similar onlap trends using a geometric approach

with subsidence and sediment supply as the variables.

Off-Axis: As progradation continues, these hybrid-bed-prone proximal-fringe
deposits will become overlain by deposits of more proximal flows which have not
decelerated to the same degree and hence are more turbulent and of lower concentration,
but sand-rich (Figs. 3.17, 3.19). The off-axis deposits will be able to drape the slope more
effectively than the underlying hybrid beds owing to their lower sediment concentrations
(Fig. 3.19). This will result in progressive termination of their deposits higher up on the
slope and either intra-formational onlap against the now thinner veneer of the low-density

fringe or onlap directly against the hemipelagic basin margin (Figs. 3.17, 3.19, 3.20, 3.21).

Axis: As higher-concentration flows begin to dominate, intra-formational onlap
may occur against the underlying fringe or off-axis deposits that were able to run up the
hemipelagic slope (Fig. 3.19). The highly concentrated basal layers of these flows will be
preserved as abruptly onlapping high-density turbidites, with the low-density tail of the
flow bypassed down-dip. These axial flows will also be more erosive and able to
incorporate mud-rich substrate, resulting in an increasing likelihood of intra-formational
onlap through short-length-scale rheological flow transformation and consequent higher
thinning rates adjacent to the basin margin (Fig. 3.14). The scours formed by these erosive
events close to onlap will promote further autocyclic modulation of stacking patterns
adjacent to the basin margin (e.g., Eggenhuisen et al. 2011). This relationship will also be
exaggerated in coarser-grained systems because higher concentration flows will be less able
to deposit farther up the slope, particularly at lateral margins if these high-concentration

flows are narrower (Al-Jaidi et al. 2004).

A critical point in the basin fill will then be reached when these deposits heal the
confining topography sufficiently to allow bypass of the coarser components of flows over
the confining slope, forming a stepped, instead of a ponded, basin (Prather et al. 2017).
Until this level is reached the finer-grained parts of the flows were stripped, thus increasing
the sand proportion in the up-dip basin (Prather et al. 2017). This transition is represented

toward the sill of the Annot Basin, where proximal lobe-axis deposits bypass down-dip to
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the Grand Coyer minibasin (Fig. 3.2), where this stratigraphic evolution repeats in the next

confined depocenter.

In the case that the topography is sufficient so as not to be healed by the underlying
deposits, the lobe-axis deposits will continue to onlap against the underlying deposits until
the accommodation is healed sufficiently to allow the axial deposits to onlap against the
hemipelagic basin margin or completely fill the basinal relief and behave as essentially
unconfined deposits, resulting in downlapping terminations (Fig. 3.19). Apparent
unconfinement in a vertical section may also occur if allogenic progradation (e.g.,
increasing sediment flux) does not keep pace with topographic healing. This will result in
the axial sandstones rarely onlapping directly against the constantly retreating basin margin
and instead depositing away from the slope and on the basin floor (e.g., Kneller and

McCalffrey, 1999).
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Figure 3.21: Model for the progradation of a clastic system into an intra-slope minibasin. Representative logs

(A, B, and C) of the various sub-environments are indicated.

Applicability and Limitations

Syn-Depositional Deformation: This general stratigraphic evolution applies most

readily to static basins with little syn-depositional deformation, where onlap trends are not

modified by changes in subsidence or depocenter migration (Figs. 3.19, 3.21). The Annot

Basin was subject to syn-depositional movement of the depocenter (e.g., Salles et al., 2014);

however stratigraphic units of the basin fill show the same conceptual evolution as

hypothesized for a static basin (Fig. 3.6), with the only difference being that the onlap is

exaggerated on the tilted eastern exposures because of the increasing slope angle during
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deposition (Fig. 3.11A) (Salles et al. 2014). In salt-deformed basins, where syn-depositional
subsidence can be rapid, this onlap evolution will be also be exaggerated. The general
model for onlap evolution (Fig. 3.19) may therefore broadly apply to actively deforming
basins (Fig. 3.21). It may be difficult, however, to differentiate between allogenic onlap
patterns caused by syn-depositional subsidence or sediment flux (e.g., Sylvester et al., 2015)
and those caused by autogenic variations in flow properties (Fig. 3.21). Care therefore
needs to be taken when reconstructing tectonic histories from onlap trends alone,

especially in datasets without lithological control.

Onlap Incidence Angle: Frontal onlap causes greater turbidity current run-up
than lateral onlap (Fig. 3.18B, C). This in turn makes the model presented here more
applicable for dip sections against a confining slope. This is further reinforced by the Le
Ray dip-oblique correlation (Fig. 3.6), which is interpreted to record the stratigraphic
evolution of onlap described. The lack of a significant thin-bedded slope drape at the
lateral onlap of Gres d’Annot at Chalufy (e.g., Puigdefabregas et al. 2004; Smith and
Joseph, 2004) may be an example of the importance of incidence angle, with run-up

decreased against the lateral slope (Fig. 3.18B, C).

A minor thin-bedded slope drape does exist at Chalufy, however, and intra-
formational onlap does occur against these thin beds (e.g., Bakke et al. 2013). This
relationship may occur against lateral margins because flows become increasingly elongate
with increasing sediment concentrations (Al-Jaidi et al. 2004). In strike sections this will
result in a similar onlap termination pattern, with thicker and lower-concentration flows of
the lobe fringe depositing higher on the lateral slope than higher-concentration flows of the
lobe axis, which are elongated in the dip direction and more prone to bypass down-dip.
This relationship may therefore apply to both strike and dip exposures; however, greater
understanding of frontal vs. lateral onlap in exposed or subsurface deep-water systems is

required for further analysis.

The lack of a substantial thin-bedded drape at Chalufy may also be caused by its
relatively distal position compared to the Annot Basin (Fig. 3.2), resulting in lower-velocity
and lower-concentration flows being unable to maintain enough energy during their longer
passage down the slope to deposit significant thicknesses of sediment high on the

confining slopes (Fig. 3.20).
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Hierarchical Scale: The onlap patterns observed in this study are seen mainly on
the scale of tens of meters, similar to typical lobe or possibly lobe-complex dimensions
(Prélat et al. 2009). Above the spatio-temporal scale of lobe complexes the morphology of
the depositional element is less likely to be the result of autogenic processes acting on
individual events and more likely to be controlled by allogenic factors, such as the interplay
of basin subsidence and sediment supply (see stratigraphic interval scale of Sheets et al.
2002; Jobe et al. 2017) (Fig. 3.21). It should be noted that in confined basins established
morphometric ranges for unconfined depositional element thicknesses break down due to
variable degrees of confinement across systems (Prélat et al. 2010). The lobe-scale
applicability of the model is therefore purely a hierarchical observation because lobe

thicknesses will vary across systems.

INTRA-FORMATIONAL ONLAP

AUTOGENIC ALLOGENIC
Lobe scale Lobe complex scale

Basin Basin

margin margin
static uplift T
Basin margin at endt,
onlap Axis/ )
Off-axis
_ Autogemc E;ﬁggal_ Allogenic
intra-formational pistal  intra-formational
onlap Fringe onlap

Figure 3.22: Types of intra-formational onlap that can be recognized in confined deep-water basins
(modified from Sinclair and Tomasso, 2002). A distinction is made between antogenic onlap, caused
by longitudinal flow evolution over shorter timescales, and allogenic onlap, caused by tectonic subsidena
over longer timescales. Autogenic processes will create short-length-scale heterogencities in larger-scale

and allogenically controlled sequences.

Stratigraphic Position: L.obe progradation is unlikely to be constant; fluctuations
in sediment supply, relative sea-level or changes in routing may result in small-scale
backstepping. This backstepping creates discrete boundaries between successive members
in the Annot Basin (Callec, 2004; Euzen et al. 2004) (Figs. 3.3, 3.5). These fluctuations will
result in a non-uniform evolution of flow concentration during progradation, however on
the basin-scale the overall trend of increasing flow concentration and subsequent onlap
style will be maintained, with higher-density flows becoming more prevalent in the basin
through progradation. These observations make the model most applicable to the early fill
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of confined deep-water systems, where confinement is greatest and distal thin-bedded

turbidites will be most prevalent.

Low-density and thin-bedded turbidites also tend to form thinner successions than
high-density and thick-bedded turbidites. This is because sediment volume and
sedimentation rates are greater in higher-density flows and because differential compaction
more heavily affects finer-grained successions. This has implications for the evolution of
onlap because the distal lobe fringe will be thinner than the lobe axis. As a result, the intra-
formational onlap against the underlying fringe will be much more difficult to detect
through time as the draping low-density turbidites gradually become thinner as the basin
fills, eventually resulting in the higher-density flows onlapping directly against the
hemipelagic basin margin (Fig. 3.17). This relationship is seen in the Le Ray member (Fig.

3.0), where the thin-bedded fringe is gradually surmounted by later flows.

Other Variables: This conceptual model aims to describe in simple terms the
effect that autogenic flow evolution may have on onlap patterns in confined basins.
Variables such as a waxing-waning sediment supply, hemipelagic aggradation rates, and the
dominant grain size of the system are not discussed fully; however they will act to alter the

autogenic processes that affect onlap and should be explored in future studies.

3.8 Conclusion

Understanding flow interaction with, and bed termination against, confining
topography is critical for reconstructing the structural and sedimentological evolution of
deep-water basins. This study presents a review of onlap styles in deep-water settings based
on detailed field investigations and compares these results against those from a simple
numerical model. Onlap terminations are shown to evolve in a predictable way through the
progradation of a submarine lobe succession, with different lobe sub-environments
identified at the basin margin through the migration of successive termination points and

facies trends.

Initially termination points migrate towards the basin margins as low-density
turbidites significantly drape the inherited basinal topography. Progressively higher-
magnitude flows with greater sediment concentrations of the hybrid-bed-rich proximal fan
fringe onlap these underlying deposits, causing the development of an intra-formational
onlap surface that is characterized by either a basinward shift in termination points or a

111



reduced distance between successive termination points towards the basin margin. Hybrid
beds are also shown to constitute significant thicknesses of the proximal fringe in confined
systems through long run-out transformation, slope-induced transformation, and intra-
basinal slope instability. Progradation of the lobe off-axis over the proximal fringe will
cause further intra-formational onlap as the lower-concentration off-axis deposits drape the
slope. Onlap against the fringe drape will continue until it is surmounted and onlap occurs
directly against the hemipelagic basin margin. Intra-formational onlap may also occur in the
lobe axis through abrupt onlap of these high-concentration deposits against the undetlying

lower-concentration fringe or off-axis deposits.

These sedimentological processes act to modulate the allogenic signals present in
the Gres d’Annot of the Annot Basin, with onlap patterns controlled by both allogenic
processes, through tectonic deformation and increasing sediment supply, and autogenic
processes, through the interaction between longitudinal flow evolution and confining basin
margins. Depositional hierarchy is also shown to be important when interpreting onlap
patterns, with autogenic processes more important at the lobe scale and allogenic processes

more important at the lobe-complex scale.
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4.1 Abstract

Submarine fans are the largest sediment accumulations on Earth and are sites of
burial for gigatons of terrigenous sediment and organic carbon. Sequestration of organic
carbon into deep-marine sediments removes carbon dioxide from the oceans and
atmosphere, and thus affects global climate. A major global climatic cooling event occurred
during the Eocene-Oligocene transition (EOT) and was characterised by a series of abrupt
cooling steps and eustatic sea-level falls related to solar insolation minima and Antarctic ice
sheet growth. New stable carbon isotope data from the Alpine foreland basin show that
these cooling events and sea-level falls coincide with increased rates of terrigenous
sediment supply to deep-marine environments and the growth of submarine fans.
Enhanced burial of terrigenous organic carbon associated with this growth is inferred to
have acted as a positive feedback to the EOT cooling events, aiding the transition from
Paleogene greenhouse to current icehouse conditions. Rising sea-levels in the future may
reverse this process, resulting in reduced organic carbon burial in deep-marine
environments and increased global warming. Sequestration of organic carbon in submarine
fans is suggested to be an under-appreciated modulator of Farth’s climate, with submarine
fan growth intimately linked to global climatic events. This study also provides insight into
how external influences are recorded in the stratigraphic record of the Alpine foreland

basin, and constrains the Oligocene chronostratigraphy of the basin.

4.2 Introduction
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The Eocene-Oligocene climate transition (EOT) between ~34 and ~33 Ma
occurred in response to the opening of oceanic gateways in the Southern Oceans (Kennett,
1977), decreased atmospheric CO; (Pearson et al. 2009) and favourable orbital cycles
(Ladant et al. 2014) (Fig. 4.1). The EOT resulted in the establishment of major Antarctic
ice sheets (Liu et a. 2009) and the transition from Paleogene greenhouse to current
icechouse conditions (Wade et al. 2012). The EOT occurred through a series of global
cooling ‘steps’ that correspond to positive 6'°O excursions and eustatic sea-level falls of up
to 105 m (Katz et al. 2008). This ‘stepwise transition’ has been attributed to the wide
variety of EOT forcings and the intricacy of the feedbacks between them (Katz et al. 2008;
Pearson et al., 2008).
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Figure 4.1: Sea-level (Miller et al. 2005) curve for the Eocene and Oligocene. Hatched interval represents the
approximate extents of the Eocene-Oligocene transition (Miller et al. 2008), black dashed line represents
Eocene-Oligocene boundary (Katz et al. 2008) and green dashed lines represent oxygenisotope ‘steps’ thar
correspond to eustatic sea-level falls (Katz et al. 2008).

Submarine fans are built from the deposits of sediment-laden gravity-driven flows
that transport gigatons of terrigenous sediment and organic carbon per year to deep-marine
environments (e.g. Curray and Moore, 1971; Ingersoll et al. 2001). The Bengal Fan, for
example, has been responsible for the burial of 15% of the Earth’s organic carbon flux
over the last 15 Myr (Galy et al. 2007). Submarine fan growth has been shown to occur
during low (e.g. Posamentier et al. 1988, Van Wagoner et al. 1990) and high (e.g. Weber et
al. 1997; Burgess and Hovius, 1998; Carvajal and Steel, 2006; Covault et al. 2007) sea levels,
and may be driven by tectonic (Puigdefabregas and Souquet, 1986; Pickering and Bayliss,
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2009; Castelltort et al. 2017; Bao et al. 2018) and climatic processes (Weber et al. 2003;
Ducassou et al. 2009; Jorry et al. 2010). The stable isotope of carbon (6"°C) has been used
as a proxy for assessing sea-level control on deep-marine deposition (e.g. Jenkyns, 1996;
Mitchell et al. 1996; Castelltort et al. 2017). Positive 6°C excursions are considered to
correspond to high sea-levels, flooded shelves, high biological productivity and burial of
"?C while negative §”C excursions correspond to low-sea levels, exposed continental
shelves, lower productivity and greater run-off (Jenkyns et al. 1996; Castelltort et al. 2017).
By constructing a 6°C curve through a deep-marine sequence of a known age it is therefore
potentially possible to relate periods of enhanced or decreased sedimentation to eustatic

and climatic trends (Castelltort et al. 2017).

The Gres d’Annot represents an exhumed siliciclastic deep-marine succession
deposited within the Alpine foreland basin during the EOT (Fig. 4.2) (Joseph and Lomas,
2004). The Gres d’Annot records a common deep-marine stratigraphic pattern of fine-
grained intervals interspersed with coarser-grained intervals. In the Alpine foreland basin
this cyclicity has been attributed to both sea-level and tectonism (Apps, 1987; Callec, 2004;
Euzen et al. 2004; Puigdefabregas et al. 2004); however, the relative impact of these

processes has not been tested. This study therefore aims to investigate 1) the causes of
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Figure 4.2: Paleogeographic setting of the Grés d'Annot during the Late Eocene (modified
from Joseph and Lomas, 2004). The studied exposure is located at the distal extent of the
SW Alpine foreland basin submarine fan.
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feedback mechanism for global cooling

lithological cyclicity in the Gres d’Annot, and 2) whether this relationship is related to the
EOT climatic regime.

4.3 Study area: Chalufty

One of the most well-studied Gres d’Annot exposures is located at the Montagne
de Chalufy and represents a relatively distal part of the Grés d’Annot submarine fan system
(Fig. 4.2; Fig. 4.3). The exposure comprises onlap of three prominent coarse-grained Gres
d’Annot intervals against an older matl paleo-slope (Du Fornel, 2003; Puigdefabregas,
2004; Bakke et al. 2013). The coarse-grained intervals are interpreted as high-density
turbidites deposited within confined submarine fan lobes deposited on the basin floor.
These coarse-grained intervals are bound by finer-grained intervals, which are interpreted
as low-density turbidites interbedded with thin hemipelagic mudstones that were deposited
at the distal extents of coarse-grained lobes or distributary channels on the basin floor (Fig.
4.3; Appendix B). One of these coarse-grained channels can be correlated northwards from
within the uppermost fine-grained interval, where it erodes downwards through an

underlying coarse-grained interval (Joseph et al., 2000).

Figure 4.3: The measured section at Chalufy and stratigraphic context.

Foraminiferal dating indicates that the base of the Grés d’Annot exposed at
Chalufy was deposited at a maximum of 34.2 Ma (NP20/NP21), with the top of the Gres
d’Annot being deposited at a maximum of 32.8 Ma (NP21/22) or 32 Ma (top P18) (Fig.
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4.3) (Du Fornel et al. 2004; Euzen et al. 2004). The base of P18 occurs prior to the first
coarse-grained interval (Fig. 4.3; 4.3) (Du Fornel et al. 2004).

4.4 Data and methods

The dataset comprises one continuous measured section from the base to the top of Gres
d’Annot exposure at the Chalufy exposure (Fig. 4.2; 4.2; Appendix B), with 111 samples
recovered from three fine-grained intervals within this section (Fig. 4.4; Appendix B). The
samples were collected at 50 cm intervals, from > 30 cm below the exposed surface and
only within hemipelagic sections, thus avoiding potential influxes of allochthonous
material. The samples were crushed and their bulk carbonate §°C and §°O values
measured using mass-spectrometry, with 9 repeated measurements of section
representative samples yielding a mean measurement error of + 0.30 for 6°C (Fig. 4.4) and
+ 0.06 for §®O. Carbon and oxygen isotopes are presented against the V-PDB and V-
SMOW standards, respectively.

The resulting three isotopic curves, representing each fine-grained interval, were placed
within bounding age constraints derived from micropaleontological zonation of the study
area (foraminiferal P-zones of Du Fornel et al. 2004). Lack of micropaleontological
resolution led to the time occupied by each curve within these palacontological constraints
to be assessed through correlation with time-equivalent and the geographically-closest data
compilations; the North Atlantic §”C curve (Cramer et al. 2008) and eustatic sea-level
curve of the New Jersey passive margin (Miller, 2005; Kominz et al. 2008), following the
methodology of Castelltort et al. (2017). Selected samples distributed at regular heights
from within the fine-grained sections have also undergone X-ray diffraction (XRD), total
organic carbon (TOC) and petrographic analysis in order to assess the potential for mixed-

carbonate-source error or diagenetic overprinting.
4.5 Results
Diagenetic overprinting

XRD of selected samples within each interval indicates total organic carbon (TOC)
contents of < 0.7 % and a calcite to organic matter ratio of > 7:1, reducing the likelihood
of diagenetic contamination from organic carbon (Saltzmann and Thomas, 2012). Oxygen

isotopes (6*O) are not used for paleo-environmental interpretation as ¢°O is prone to
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diagenetic overprinting, with the extremely low §°O values produced by this study
indicating interaction with warm subsurface waters (e.g. Saltzmann and Thomas, 2012).
This can be used to assess the diagenetic effect on 813C, with cross-plotting of §°C and
6"°0 from each interval showing no co-variance (mean R*> = < 0.06), indicating a lack of

6"°C diagenetic overprinting (Appendix B) (Marshall, 1991).

Carbon isotopes

The identification of benthic foraminifera in petrographic analysis of the samples
(Appendix B), and the occurrence of dateable benthic foraminifera within the Chalufy
section (Du Fornel et al. 2004) indicates that the bulk §°C measurements primarily record
the signature of this fauna. The bulk 6”°C data shows a broadly increasing spread with
increasing height in the section (1o = 0.50 %o, 0.44 %o, 0.86 %o, 0.97 %o for each sequential
fine-grained interval), with a mean standard deviation of 0.89 %o (Fig. 4.4; Appendix B).
Mean 6°C values are 1.97 %o more negative than time-equivalent open oceanic values.
Moving-average curves (the running mean of a sliding window of five data-points within
lower fine-grained interval and ten data-points within the middle and upper fine-grained
intervals) shows poor correlation between the Chalufy 6°C curve and the oceanic §”°C
curve, with the positive global §°C excursion seen at the EOT (Cramer et al. 2008) not
observed within this data (Fig. 4.5). The noise, more negative values, signal amplification
and global disparity is attributed to: 1) microscopic turbidites or calcite-filled fractures
within the hemipelagic sections, which create allochtonous noise with a dominantly
autochthonous signal (Appendix B). Similar noise was seen by Melchin and Holmden
(2006) in bulk 6°C samples of potentially remobilised carbonates; 2) the relatively proximal
position of the basin which may have resulted in the oxidation of light organic '*C
delivered by rivers (Jenkyns, 1996; Voigt and Hilbrecht, 1997); 3) the restricted nature of
the basin preventing rapid exchange with the global carbon reservoir (Saltzmann and
Thomas, 2012). This restriction may have resulted in a dominance of the ‘local’ signal over

the relatively short timescale studied (< 2.5 my).

The averaged §”°C curves of the two sandstone-bounded fine-grained intervals
correlate well with time-equivalent sections of the global eustatic curve, with 5-point-
average polynomial regressions yielding R* values of 0.55 (middle) and 0.74 (upper), and a
10-point-average yielding R* values of 0.81 (middle) and 0.88 (upper) (Fig. 4.5). The fine-
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grained intervals correlate with eustatic sea-level highstands, with the ends of the curves
(sands 1A, 1B and 4) correlating with sea-level lowstands, which are themselves related to
global Oligocene cooling events (Miller et al. 2008; Katz et al. 2008). The lack of equivalent
sea-level-related excursions on the global §°C curve is likely related to a buffering of the
sea-level signal by other oceanographic or atmospheric processes in open oceanic and distal
environments, and to the amplification of the sea-level signal in the proximal and restricted

Alpine foreland basin.

The correlative surface of the coarse-grained channelized interval exposed to the
north (sand 3) intersects mid-way through the third fine-grained interval (Joseph et al
2000), and therefore correlates with a sea-level highstand. The exact depositional duration
of this channel is uncertain due to the correlative surface representing a sustained period of
bypass and erosion through the channel (e.g. Englert et al. 2019), however it must have
been abandoned prior to deposition of fine-grained interval overlying the correlative
surface as this interval overlies the channel to the north (Joseph, 2000), thus likely

represents channel abandonment.
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The lower and upper boundaries of the marl and first fine-grained interval are
uncertain due to their relatively low thicknesses and uncertainty surrounding how much
time is occupied between the marl onlap surface and Gres d’Annot deposition, with the
marginal position of the Chalufy section resulting in early thin-bedded turbidites deposited
within the deepest part of the basin not being recorded (e.g. Du Fornel et al. 2004). The
overall higher 6°C values and biostratigraphic constraint within the first fine-grained
interval (P17 boundary), however, indicate that these sections correspond to the highstand

between ~34.2 and ~33.7 Ma.
4.6 Discussion

FEocene — Oligocene Transition

Globally-recognised EOT cooling events and associated sea-level falls correspond to
petiods of coarse-grained deep-marine deposition and submarine fan growth within the
Alpine foreland basin (Fig. 4.5), with the first phases of growth correlating with a cooling
and eustatic lowstand around EOT-2 and Oi-1 (50 — 105 m fall) and the second phase of
growth correlating with a eustatic lowstand around Oi-1a (40 — 50 m fall) (Katz et al, 2008;
Houden et al. 2012). The fourth phase of growth correlates with a eustatic lowstand at ~32
Ma, which could be a precursor to Oi-1b at ~31.7 Ma (Miller et al. 2008), or an orbital
cycle (Zachos et al. 1996). Shallower marine erosion surfaces in Alabama (Miller et al. 2008)
and deposition of calcareous turbidites adjacent to Pacific atolls (Schlanger and Silva, 1980)
have also been correlated to eatly Oligocene 6"*O excursions and sea-level falls, highlighting

the global depositional signature of these events.

Low sea-levels tend to enhance siliciclastic deep-marine deposition as rivers are able
to traverse shallow contintental shelves and deliver sediment directly to deeper waters (e.g.
Posamentier et al. 1988). Oxidisation of organic material eroded from soils and vegetation
on land, and transported by rivers, is anticipated to have enhanced negative §°C excursions
(Saltzmann and Thomas, 2012); during times of lowered sea-level, a large proportion of
this organic material will have been transported by sediment-gravity-flows and buried on
the seafloor, as is evidenced by the common occurrence of wood and plant debris
preserved within Grés d’Annot turbidites (Stanley, 1986; MacArthur et al. 2016; Soutter et
al. 2019), and the gigatons of organic carbon buried in submarine fans today (Galy et a.
2007). Organic carbon burial in deep-marine environments has also been shown to be 50

% higher during lowstands (Cartapanis et al., 2016), with the Amazon Fan accounting for >
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13% of the global organic carbon burial rate during the Last Glacial Maximum (Schlinz et
al. 1999; Cartapanis et al., 2016) and submarine fans in Central Japan showing an increased
burial of terrigenous organic matter during Mio-Pleistocene lowstands (Omura and
Hoyanagi, 2004). The present-day Congo fan, which is directly connected to its source-
river and therefore analogous to a lowstand fan, stores 19% of all South Atlantic organic
carbon, despite covering only < 0.01% of the total surface area of the South Atlantic
(Rabouille et al. 2019), with most of the organic carbon stored in the distal lobes of the fan
(Stetten et al. 2015). It is likely that similar submarine fan growth and consequent burial of

organic carbon occurred during Oligocene lowstands.
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The cooler (Eldrett et al. 2009) and more arid (Fan et al. 2020) northern latitude
climates associated with these events will also have enhanced sediment delivery to the deep
sea, with lower vegetation cover, or ‘de-greening’ (Caves et al. 2016), during cooler periods
increasing hinterland erosion rates and run-off. Vegetation recovery during warm
interglacials will have reduced erosion rates and run-off during EOT interglacials, resulting

in positive oPC excursions and submarine fan retreat.

It is therefore suggested that falling CO; levels and cooling across the EOT
(DeConto and Pollard, 2003; Zachos and Kump, 2005; Pearson et al. 2009) was enhanced
by the burial and sequestration of organic carbon in deep-marine basins during cool and
arid periods and associated low eustatic sea-levels. The transition from greenhouse to
icehouse conditions in the Cenozoic, and related evolutionary and environmental
consequences (e.g. Prothero and Berggren, 2014), was consequently modulated by the
growth of submarine fans. It also suggested that future rising sea-levels are likely to reverse
this process, with less burial of organic carbon in submarine fans and accelerated global

warming,
Influence of hinterland tectonics

The only coarse-grained interval that does not correlate with an EOT event is sand
3, which was deposited during eustatic sea-level highstand between ~32.7 and ~32.4 Ma
(Fig. 4.5), and represents a major period of aggradation within the shallow marine Alpine
foreland (Euzen, et al. 2004) and channelization within the deep-water Alpine foreland
(Joseph et al. 2000). The lack of global climatic or eustatic events related to this period of
coarse-grained deposition indicates that sediment supply was enhanced to deep-water by a
more ‘local’, or basin-specific, event. The most likely local forcing for this increased
sediment supply is tectonic uplift and erosion of the Corsica-Sardinia hinterland, which was
closely linked to the basin by steep drainage systems (e.g. Joseph and Lomas, 2004) and was
being tectonically deformed at this time (e.g. Euzen et al. 2004; Advokaat et al. 2014). This
transient increase in sediment supply will have competed with the accommodation increase
associated with eustatic highstand, thus driving the major period of aggradation recorded
on the shelf (Euzen et al. 2004) and the maintenance of coarse-grained deep-water

deposition during highstand (e.g. Carvajal and Steel, 2000).

Implications for Alpine foreland basin stratigraphy
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Key exposures in the Alpine foreland basin have been correlated litho- and
biostratigraphically from the shelf to the deep basin, with the Chalufy exposures
representing the distal extents of the correlation (Fig. 4.6) (Du Fornel, 2003; Du Fornel et
al. 2004; Euzen et al. 2004). Relatively low biostratigraphic resolution, however, has made
precise chronostratigraphic surfaces difficult to define (Fig. 4.6). The existing commonly
used window for Greés d’Annot deposition is between ~34.2 Ma and ~32.8 Ma (Euzen et
al, 2004; Salles et al. 2014), with the sequences resolved by this study deposited between
~33.8 and ~32.8 Ma (Du Fornel, 2003). This study indicates, however, that the Gres
d’Annot deposition continued until at least 32.3 Ma (base of uppermost sand), thus
extending the depositional window by ~500 ka (Fig. 4.6). Deposition likely continued well
after 32.3 Ma, as the top of members F and G are not resolved by this dataset. This study
also refines the previously unknown chronostratigraphy of members C, D, and E, with 100
— 200 kyr cycles of progradation within these members occurring at ~33.6 Ma, ~33.0 Ma,
~32.6 Ma and ~32.3 Ma, respectively (Fig. 4.0).
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Figure 4.6: Correlation from proximal to distal within the Alpine foreland basin. Colonred line:
indicate refined age relationships, with green lines indicating EOT-related forcings and red lines

indicating tectonic forcings (modified from du Fornel et al. 2004).

These refined correlations may also have paleogeographical implications, indicating
that coarse-grained flows were entirely confined to proximal basins during the Late

Eocene, thus preventing coarse-grained deposition in the distal Chalufy sub-basin. Coarse-
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grained deposition did not begin in the Chalufy sub-basin until the earliest Oligocene
(~33.7-33.6 Ma) (Fig. 4.6; DR2), concurrent with connection of the proximal Grand Coyer
and Annot sub-basins (Fig. 4.6) (Salles et al. 2004). These results are agreement with the
“fill-spill’ stratigraphic evolution initially proposed for the Alpine foreland sub-basins
(Sinclair and Tomasso, 2002). This study, however, indicates that the primary driver of this
evolution was EOT-related eustatic and climatic events, with only one period of submarine
progradation occurring during highstand at ~32.6 Ma, and therefore inferred to be tectonic
in origin (e.g. Castelltort et al. 2017). In the absence of these external eustatic-climatic
events sediment supply will have been reduced to the deep-water foreland. Consequently,
these basins may have remained under-filled throughout the Oligocene as SW-propagating
flexural subsidence from the growing Alps deepened the basins (e.g. Ford et al. 1999) and

reduced sediment supply to deep-water.

4.7 Conclusion

Deep-marine submarine fans are the most significant depositional sites for
terrigenous sediment on Earth and are important sinks of organic carbon. Understanding
the controls on this deposition is therefore critical for predicting sedimentation patterns
and organic matter burial in the past and future. Stable carbon isotope and
sedimentological data from the deep-marine Alpine foreland basin indicates that the
combined effect of cooler climates and eustatic sea-level fall associated with the transition
from Paleogene greenhouse conditions to current icehouse conditions resulted in increased
sediment supply rates, submarine fan growth, and therefore enhanced burial of terrigenous
sediment and organic matter in deep-marine environments. Withdrawal of organic carbon
from the ocean-atmosphere system would have reduced atmospheric CO; and accelerated
cooling across the Eocene-Oligocene transition. Future rising sea-levels are expected to
reduce organic carbon burial in submarine fans, increase atmospheric CO, and accelerate

global warming.
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CHAPTER 5:Giant submarine landslide triggered by Paleocene mantle plume

activity in the North Atlantic
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5.1 Abstract
The 290 km long ‘Halibut Slide’ is the world’s largest epicontinental submarine landslide.
Between 64 and 62 Ma, plume-related uplift in the North Atlantic caused reactivation of
major intra-plate faults. This reactivation caused instability of Cretaceous chalk slopes
across the North Sea Basin, triggering the Halibut Slide (HS). Megascours, up to 1 km
wide, 150 m deep and 70 km long, indicate slope failure from an intra-shelf high east of
mainland Scotland and subsequent flow down a ~1.1° slope. Megascours were gouged by
cuboid chalk blocks, up to 1 km wide and 170 m high, some of which out-ran the main
slide body by up to 10 km. The Halibut Slide has a decompacted volume of ~850 km’ and
a basal slide surface extending over ~7000 km®. Subsequent clastic sediment input points
and dispersal pathways were controlled by the underlying Slide topography for ~10 Myr.
The discovery of this major submarine landslide provides new insights into the response of
sedimentary systems to regional and deeply rooted tectonic events, and the initiation of

long term sediment routing patterns.

5.2 Introduction
Submarine landslides are the largest mass-movements known on Earth and are important
seascape modifiers, creating some of the largest single-event deposits known (e.g. Calves et
al., 2015). Submarine landslides can generate tsunamis (e.g. Dawson et al., 1988), damage
submarine infrastructure (Mulder et al., 1994) and modify post-failure sediment distribution
(Ortiz-Karpf et al., 2015). Understanding the formation and behaviour of large submarine
landslides is therefore important for both geohazard assessment and hydrocarbon reservoir

prediction (Clare et al., 2018).
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Using an extensive basin-scale 3D seismic reflection dataset, integrated with core and
wireline log data, this study aims to: 1) document and characterize the Halibut Slide, and 2)
interpret slide genesis with reference to major basinal processes, principally mantle-

upwelling and associated tectonic adjustments.
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Figure 5.1: Paleocene paleogeography of the North Atlantic and the present-day extent of Cenozuic
volcanism. The uplift cansed by this volcanism cansed Paleogene deposition in the North Sea and adjacent
basins (modjfied from Abmadi et al., 2003 and Mudge, 2015). The trend of the plume during the Late
Paleocene is also indicated, showing the North Sea Basin at its SE margin (modified from Hartley et al.,
2011). B, C: Seismic reflectors (B) and corresponding stratigraphic interval (C) (Absolute ages from Mundge
(2015)). The Halibut Slide is represented by Top Maureen within well 22/30a-1; white box indicates
logged core position. D: The relationship between mantle plume activity and clastic (yellow) or remobilised
chalk (gray) deposition in the early Paleocene of the North Sea. Absolute ages from Mudge (2015). Solid rec
line shows North Atlantic volcanic activity from White and Lovell (1997). Dashed red line and black solia
lines show earliest volcanic activity from Wilkinson et al. (2016) (no relative volcanic activity level is impliea
by dashed line), fanlt activity from Cooper et al. (2012). All dates tied to the magnetic chronology of
Gradstein et al. (2012). BE, Banff Faunlt; CG, Central Graben; ESB, East Shetland Basin; FSB,
Faroe—Shetland Basiny GGF, Great Glen Fanlt; GH, Grampian High; HBF, Highland Boundary
Faulty HH, Halibut Horst; [H, Jaeren High; OMF, Outer Moray Firth; SV'G, South Viking Graben,
UH, Utsira High; W, Walls Fault; WP, Western Platform; WSSE, West Shetland Spine Fanlt.

5.3 Data and methods
This study utilises the full-offset pre-stack Kirchoff time migrated Central North Sea PGS
MegaSurvey Plus 3D seismic dataset complemented by the post-stack time migrated
merged PGS MegaSurvey covering the Moray Firth (Fig. 5.1). Vertical seismic resolution

within the Paleocene interval is 25-33 m (given an interval velocity of ~3 to 4 km s and a
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dominant frequency ~30 Hz) with a bin spacing of 12.5 x 12.5 m in the Megasurvey Plus. A
sub-sampled 50 x 50 m line spacing was used for analysing the MegaSurvey. Both surveys
have a 4 ms sample rate and are processed to zero phase, with a downward increase in
acoustic impedance represented by a trough (blue reflection). Conversions between
thickness in two-way time (TWT) and depth were performed using a sonic-log derived

average interval velocity of 4.3 km s™ (range between 3.1 - 5 km s™) for the Halibut Slide.

Seismic picks were tied stratigraphically to wells (Fig. 5.1B). Synthetic seismograms
were extracted from a database of 975 wells available within the study area to give further
confidence in the picks and were combined with wireline log (primarily gamma-ray and
sonic) and core data for interpretation of lithology (Fig. 5.1). A 12 m cored section was

logged from the Halibut Slide within well 22/30a-1 (Appendix C).

The seismic data were interpreted by systematic horizon picking followed by
horizon interpolation and iteration, allowing the regional Paleocene bounding surfaces of
Top Chalk and Top Sele to be mapped (Fig. 5.1; 5.2; 5.3). The top of the Halibut Slide was
identified, tracked and interpolated (Fig. 5.4). Surface attributes, such as variance and root
mean square (RMS) amplitude, were then used to identify the extent of the slide. Horizon
slicing between the bounding surfaces was used to assess the internal characteristics of the
Halibut Slide and interpret depositional cycles within the overlying Paleocene section (after
Kilhams et al., 2015) (Fig. 5.1; 5.2; 5.3). These horizon slices and bounding surfaces were
used for spectral decomposition, allowing both the internal and external geomorphology of

the slide to be better imaged (Fig. 5.5A, D, E).
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5.4 Geological setting

The central North Sea Basin comprises a Cenozoic sag basin overlying a failed
Mesozoic rift (Fig. 5.2). Paleocene sedimentation was initiated due to uplift and subsequent
SE-tilting of the northern UK landmass (Den Hartog Jager et al., 1993) associated with
rifting and magmatic underplating in the North Atlantic around ~62 Ma (White and Lovell,
1997). The Moray Firth paleo-shelf is estimated to have undergone up to 390 m of uplift
and erosion during the Paleocene (Nadin and Kusznir, 1996). Late Cretaceous to eatly
Cenozoic fault re-activation within the Moray Firth has also been linked to North Atlantic
tectonism (e.g. Underhill, 1991). Aeromagnetic data showing offset dyke swarms across the
WSW-ENE trending fault zones that crosscut Northern Ireland and Scotland combined
with dating of igneous centres and dyke swarms in Northern Ireland showed that these
crustal-scale strike-slip faults were active in the early Paleocene between 64 and 62 Ma
(Cooper et al. 2012). Paleocene sand-rich intervals within the Maureen, Lista and Sele
Formations of the Central North Sea Basin have been related to episodic hinterland uplift
caused by plume activity in the North Atlantic (White and Lovell, 1997; Mudge and Jones,
2004). The oldest of these intervals, the ‘Maureen Reworked Unit’ (MRU), overlies the
Intra-Danian unconformity at 62.7 Ma (Mudge, 2015). The MRU is concurrent with some
of the earliest volcanism in the North Atlantic, such as the British-Irish Paleogene Igneous

Province at 63.2 £ 0.6 Ma (Wilkinson et al., 2010).
5.5 Results

Regional thickness observations
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Regional thickness maps of the individual formations that make up the Paleocene
interval show that deposition was focussed down the eastern and western corridors of the
basin, with thinning occurring toward the SE (Fig. 5.3). These corridors are defined by pre-
existing Mesozoic structuration (Fig. 5.2). The Maureen Formation is characterised in its
eastern corridor by a thick and well-defined body extending from the NW, where it is less
defined, to the SE, where it pinches out abruptly (Fig. 5.3A). This body is termed the
Halibut Slide (HS). Deposition throughout the Paleocene and eatly Eocene appears to thin

® Salt diapir
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Figure 5.3: The effect of the Halibut Slide (approximate position in black dashed outline) on subsequent

Paleocene sand-rich cycles (black arrow points to depositional effect of thickening adjacent to or thinning
over distal toe of Slide). The topography of the Halibut Slide is almost entirely healed by the Eocene, with
the Tay fan only showing subtle thinning and pinch-out within the Slide body (D). The distal toe of the
slide appears to have had the greatest effect on subsequent cycles (black arrows), possibly due to the
ponding and thickening of chalk megaclasts in this area, conpled with its distal position within the clastic
system. The thickness map were generated following the horigon skicing method used regionally for the
Paleocene by Kilhams et al. (2015). Areas with poor thickness estimates due to interpolation are shaded

grey (eg. the Jaeren High).
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over the distal extent of the HS (Fig. 5.3B, C, D). Regions of thickened sedimentation also
occur adjacent to the HS, particularly in the Lista Formation, where deposition appears to
be steered by the distal extent of the HS, and in the Sele Formation, where SW-NE
trending fairways abut and thicken at the margin of the HS (Fig. 5.3C). Thickened
deposition also occurs in response to salt-diapir-related topography and remnant rift

topography in the SW (Fig. 5.3C, D).
Halibut Slide observations

The Halibut Slide (HS) exhibits a maximum of ~170 m of mounded relief above
the Top Chalk surface (Fig. 5.1; 5.4) and forms a continuous hard-reflection, with overlying

reflections onlapping the mound (Fig. 5.5A). Within the HS, reflections are discontinuous
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Figure 5.4: Flattened and interpreted seismic section throngh the Halibut Slide (location on Fig. 3E). Wel)
intersections indicate dog legs in seismic line. The section bas been flattened to mitigate the effects of post-
depositional deformation. Megaclasts can be identified based on seismic reflection shape and amplitude. Gamma
ray signatures are typically discontinnous within the Slide because of its poorly sorted composition (Gamma

values decreases right-to-left).
and dim, with some isolated bright reflections (Fig. 5.4). Below the HS, the Top Chalk
reflection is also discontinuous and frequently shows truncation and dimmed amplitudes.
The mapped slide deposit maintains a relatively consistent thickness, thinning from around
170 m to 100 m over 170 km, before abruptly pinching-out over a distance of 10 km
down-dip at the intra-basinal Erskine Ridge (Fig. 5.1; 5.5A, B). Megascours cut into the
Top Chalk surface are up to 1 km wide, up to 150 m deep and extend for around 80 km
down-dip within a 20 km wide scour ‘belt’ that defines the inferred lateral limits of the
basal slide surface. The orientations of the most prominent megascours (Fig. 5.5C) indicate
that the main failure event may have been sourced from the Grampian High, offshore NE
Scotland (Fig. 5.1). Unfortunately, the headwall cannot be observed due to post-failure

erosion of the Top Chalk surface (Fig. 5.5C). The Halibut Slide was heavily influenced
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down-dip by existing seafloor topography, such as the northerly confining Halibut Horst,
which the Slide has been named after. The measured length of the basal slide surface (290

km) is thus the minimum length of the slide. The majority of the slide volume extends
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Figure 5.5: A: Spectral decomposition of a horizon shice within the HS. The lateral fan can be seen pinching out
against the HS' relief (dashed white line), along with numerons other MTCs along the south-western basin margin.
White dot shows location of well 22/ 30a-1. Numbers in white squares refer to UK Continental Shelf Quadrani
numbers. B: Thickness down the axis of the mapped Halibut Slide (extends 55knm up-dip from fig. 4). Megasconrs
affect the slide thickness up-dip (1) before consistent translation down-dip. The distal flow terminus forms a
thickened accumulation zone (3), rich in megaclasts, before abrupt pinch-out down-dip @). Interpolation of the
surface throngh the steep and abrupt toewall canses the TW'T thickness to stay slightly above 0 ms at pinch-out. C:
Time structure of Top Chalk (Fig. 1) surface showing the megascour belt from the Outer Moray Firth. X-X:
seismic Section showing truncation (black arrows) of chalk reflectors against the megascours on the Top Chalk
surface indicating significant erosion. D: Spectral decomposition of a horizon slice within the splayed Halibut Slide
showing outrunner blocks forming sconred glide tracks and disaggregation and expansion of the flow as it decelerates
into the western depocenter. E: Spectral decomposition of a horizon slice within the Halibut Slide showing a
ponding of megaclasts at the frontally confined (Fig. 3B) Slide toewall. The continnons pale blue response represents
the shide fringe. I': Down-dip seismic cross-section through the HS sub-body showing megaclasts and ontrunner
blocks. Both post-depositional extensional and syn-depositional compressional structures are seen within the HS.
ER, Erskine Ridge; FMH, Forties-Montrose High; HBF, Highland Boundary Fanlt; HS, Halibut Slide; JH,
Jaeren High; TC, Top Chalky WP, Western Platform. Grey circles indicate salt diapirs.
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from 200 km to 290 km down-dip on the basal slide surface, although uncertainty exists

due to poorer seismic resolution within the up-dip survey.

|

shows that the Halibut Slide is composed of allochtonous
chalk (A, C), chalk-rich debrites (B, D) and some
minor sandstones (D).

Spectral decomposition and colour blending of 10 Hz, 30 Hz and 50 Hz seismic
frequencies (Fig. 5.5A; Appendix C) shows a clear bright body trending from the shelf
toward the deep basin along a narrow corridor (~30 km wide). End Danian
paleobathymetric reconstructions indicate the slope of this corridor was inclined at ~1.1°
(Joy, 1992). This bright corridor is terminated by a 30 x 30 km lobate body in the deep
basin (Fig. 5.5A, E). Bright specks within the HS range in width and length from ~50 m to
over 1 km (average ~500 m) and are up to 160 m thick. Along the length of the HS the
spectral decomposition signature partitions a relatively continuous response from the
southern part of the body to a speckled response in the north (Fig. 5.5A). A similar
speckled and lobate feature is evident more proximally, trending E-W (Fig. 5.5A), at a
saddle-shaped low within the centre of the Mesozoic Forties-Montrose High (FMH) (Fig.
5.1, 5.5A, D). The specks have the same dimensions as those described within the Halibut
Slide, suggesting a common origin. Lineations radiating from the FMH ‘Tow’ extend
beyond the FMH speckled body and differentiate it from the distal HS which is
characterized by a laterally continuous terminal boundary (Fig. 5.5D, F). Internally the
FMH sub-body is similar to the Halibut Slide, with a bright top reflection and a chaotic
body (Fig. 5.7). The FHM also shows up-dip inclined internal surfaces (Fig. 5.7).
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The Halibut Slide is composed of chalk megaclasts within a mud-rich matrix, as
indicated by logged core data (Fig. 5.1; 5.6, Appendix C), wireline logs (Fig. 5.4) and
petrophysically derived carbonate and porosity distributions (Kilhams et al., 2015).

In total, the Halibut Slide has a length of at least 290 km and a minimum
depositional extent of 200 km. The main slide body has an average width of ~30 km and
average thickness of ~97 m, with the ~35 km long splayed slide having an average width of
~20 km and average thickness of ~80 m. In total this equates to a compacted volume of
~640 km’. If we assume the chalk was compacted to ~150 m (maximum scour depth) and
that the majority of the slide volume is dominated by chalk (megaclasts) then the
decompacted volume is estimated at ~1450 km’, based on a chalk porosity drop from 0.6

at 150 m to 0.1 at 3000 m (Mallon and Swarbrick, 2002).

Halibut Slide interpretation

Based on its geometry, internal seismic character, and the megascours, we interpret
this feature as a large submarine landslide (herein termed a ‘slide’) deposited by variable
sediment transport mechanisms, including sliding, debris flows, and probably associated
turbidity currents. The allochtonous chalk within the Halibut Slide is suggested to have
been either derived from the shelfal headwall or incorporated as the Slide gouged and
eroded the sea-bed down-dip, as evidenced by the up to 150 m of chalk removal within the
megascours (Fig. 5.5C). It is proposed that the radial sub-body of the HS described at the
Forties-Montrose High (FMH) was formed by flow splitting as part of the HS escaped the
lateral confinement of the FMH through its saddle-like depression (Fig. 5.5A). The splayed
slide experienced acceleration into the depression and confinement at its margins, before
flow expansion and deceleration as it moved past the FMH confines and into the low of
the eastern depocentre (Fig. 5.5A, D; Appendix C). The inclined surfaces within the FMH
sub-body are attributed to imbrication as the flow was compressed during deceleration (e.g.
Frey-Martinez et al., 2000), indicating that the flow was cohesive during transport (Fig. 5.7).
The radiating lineations that spread laterally from the axis of the MS are interpreted as
erosional scours caused by megaclasts gouging the substrate (Fig. 5.5D). Out-running
megaclasts seen at the ends of megascours support this interpretation (Fig. 5.5D; F;
Appendix C). The diverging pattern of the scours reflects flow deceleration as the splayed

slide became unconfined and began to disaggregate (Fig. 5.5A, D).
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Figure 5.7: Uninterpreted (A) and interpreted (B) section through the splayed portion of the Halibut Slide.

Internal thrusting and imbrication is evident within the splay as its cobesive mass decelerated during run-out.

Location on Appendisc C; Fig 11.6.

5.6 Discussion and conclusion

The Halibut Slide is the largest epicontinental submarine landslide known on Earth
and one of the most significant stratigraphic events within the geological history of the
North Sea Basin. Paleocene plume-related uplift affecting the Scottish mainland and the
Moray Firth (Nadin and Kusznir, 1996) caused tectonic rejuvenation and SE-ward tilting of
the western basin margin around 63 Ma. Between 64 to 62 Ma, far-field compression due
to a combination of plume-related uplift and the Alpine orogeny caused reactivation and
accumulation of up to 1 km of slip along major crustal scale SW-NE trending strike-slip
faults that crosscut Ireland and Scotland and entered the North Sea around the flanks of
the Moray Firth (Fig. 5.1) (cf Underhill, 1991; Cooper et al. 2012). The Halibut Slide
headwall region is located adjacent to these faults, lying ~50 km east of the Great Glen
Fault Zone and 100 km north of the Highland Boundary Fault Zone (Figs 5.1; 5.5; 5.8).

These fault zones would have moved many times to accumulate 1 km of slip between 64
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Ma to 62 Ma (cf Wells & Coppersmith 1994; Cooper et al. 2012). It is therefore suggested
that the combination of far-afield stresses and local reactivation of major tectonic
lineaments primed the North Sea Basin margin for catastrophic slope failure, resulting in

the emplacement of the Halibut Slide.

Other potential mechanisms contributing to plume-related slide initiation at this
time include increased pore pressures associated with elevated heat flow, the hydrostatic
effects of elevating the chalk aquifer above sea-level and loading of the slope by prograding
clastic systems (Fig. 5.8). These mechanisms are believed to be less important due to the
distal position of the basin compared with the main thermal anomaly, the relatively minor
uplift accumulated during the earliest plume impingement and the time lag between initial
uplift and clastic progradation. The slide represents the largest single depositional event
within this period of major tectonic upheaval in the North Sea Basin, heralding the onset of
subsequent Paleogene siliciclastic sediment supply. Sediment routing and deposition of the
Paleogene deep-marine siliciclastic systems was controlled by the underlying Halibut Slide
topography for ~10 Myr (Fig. 5.3). The discovery of the Halibut Slide demonstrates the
close relationship between major mantle and lithospheric processes and the sedimentary

history of the North Sea Basin.

Tectonic rejuvenation and Halibut  Denudation of uplifted hinterland Clastic sedimentation dispersed
by Halibut Slide topography
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Figure 5.8: Depositional model for the emplacement of the Halibut Slide. The effect the Slide has on subsequent
clastic sedimentation is also shown (based on data from DR 6). Absolute ages from Mudge (2015). Green
lineaments indicate fanlt reactivation. Arrows indicate uplift. A-Sst, Andrew Sandstone; BF, Banff Faunlt;
FMH, Forties-Montrose High; GGF, Great Glen Fault; HBF, Highland Boundary Fault; HH, Halibut
Horst; HS, Halibut Slide; [H, Jaeren Highy MF, Moray Firthy M-Sst, Maureen Sandstone;
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6.1 Abstract
Mixed siliciclastic-carbonate deep-marine systems, herein termed ‘mixed systems’, are less
well documented than their siliciclastic-dominated counterparts, but may be common
globally and misinterpreted as transient transition zones between carbonate and siliciclastic
deposition. The well-exposed Upper Cretaceous mixed-system of the Buduq Trough,
Eastern Greater Caucasus (EGC), Azerbaijan, provides an opportunity to study the
interaction between contemporaneous siliciclastic and carbonate deep-marine deposition.
The Buduq Trough represents a sub-basin formed within the larger unstable post-rift
margin of the EGC. Qualitative and quantitative facies analysis reveals that Upper
Cretaceous stratigraphy of the Buduq Trough comprises a Cenomanian-Turonian
siliciclastic submarine channel complex, which abruptly transitions into a Coniacian-
Maastrichtian mixed-lobe succession. The Cenomanian — Turonian channels are shown to
be entrenched in lows on the palaco-seafloor, with the sequence entirely absent 10 km
toward the west, where a Lower Cretaceous submarine landslide complex is suggested to
have acted as a topographic barrier to deposition. By the Campanian this topography was
largely healed, allowing deposition of the mixed-lobe succession across the Buduq Trough.
Evidence for topography remains recorded through opposing palacocurrents and frequent
submarine landslides. The overall sequence is interpreted to represent abrupt Cenomanian-
Turonian siliciclastic progradation, followed by ~Coniacian retrogradation, before a more
gradual progradation in the Santonian-Maastrichtian. This deep-marine siliciclastic system
interfingers with a calcareous system from the Coniacian onwards. These mixed lobe
systems are different to siliciclastic-dominated systems in that they contain both siliciclastic
and calcareous depositional elements, making classification of distal and proximal difficult
using conventional terminology and complicating palacogeographic interpretations.
Modulation and remobilisation also occurs between the two contemporaneous systems,

making stacking patterns difficult to decipher. The Buduq Trough is analogous in many
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ways to offshore The Gambia, NW Africa, and could be a suitable analogue for mixed

deep-marine systems globally.
6.2 Introduction

Mixed siliciclastic-carbonate systems

Sedimentary successions characterised by contemporaneous deposition of both
siliciclastic and carbonate lithologies, herein termed ‘mixed-systems’, have been identified
from the Cambrian (Osleger and Montafiez, 1996) to the Quaternary (Dunbar & Dickens,
2003; Tucker, 2003). Mixed systems are formed by a variety of depositional processes (e.g.
Mount, 1984; Chiarella et al. 2017) and are consequently recognised in a variety of
depositional environments, such as: shoreface (Zonneveld et al. 1997), lagoonal (Mitchell et
al. 2001), shelfal (Mount, 1984; Zeller et al. 2015), slope (Gawthorpe, 1986) and deep-water
(Ditty et al. 1997; Yose & Heller, 1989; Bell et al. 2018; Moscardelli et al. 2019). Mixed-
systems deposited in deep-marine (below storm-wave base) are usually formed by material
shed from a shallower carbonate-producing shelf that periodically received terrigenous
sediment (Fig. 1) (Mount, 1984; Dunbar & Dickens, 2003; Crevello & Schlager, 1980). This
material is then re-deposited in deep-marine by a spectrum of sediment gravity flows types,
from turbidity currents to submarine landslides (Dorsey & Kidwell, 1999; Miller & Heller,
1994; Tassy et al. 2015; Moscardelli et al. 2019).
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Figure 6.1: Simplified conceptual model showing how siliciclastic and carbonate systems may interact at a basin-scale
in a deep-marine mixed siliciclastic-carbonate system. Carbonate material is shed from a shallower carbonate-
producing platform that periodically received siliciclastic material; this is then redeposited in the deep-marine by o)
gravity flows (After Mount 1984, Chiarella et al. 2017).

Mixed lobes
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Sediment-gravity-flows that lose confinement on the slope or basin-floor build
lobate depositional bodies, known as lobes, which form important archives of
palaeoclimatic and palacogeographic information (e.g. Hessler & Fildani, 2019). Exhumed
deep-marine lobes have been studied in great detail, and a wide variety of stacking patterns,
depositional processes and facies distributions have been described and interpreted (e.g.
Mutti, 1983; Postma et al. 1993; Prélat et al. 2009; Terlaky et al. 2016; Kane et al. 2017; Bell
et al. 2018; Fildani et al. 2018; Fonnesu et al. 2018; Soutter et al. 2019, Cumberpatch et al.
in prep.). These studies typically focus on siliciclastic systems, with few studies investigating
the characteristics of lobes formed in mixed-systems (Fig. 6.1). This study aims to address
this by describing exhumed Cretaceous submarine lobes from the Eastern Greater
Caucasus (EGC), Azerbaijan (Fig. 6.2) which were built by contemporaneous deposition of
calcareous and siliciclastic sediment gravity flows. The characteristics of these mixed lobes
and the processes that govern their deposition are then compared with siliciclastic lobes.
This study will also describe the sedimentological evolution of the basin throughout the
Cretaceous, providing insights into the stratigraphic evolution of a basin characterised by

unstable margins.
6.3 Geological Setting and Basin Structure

Evolution of the Eastern Greater Caucasus

The Eastern Greater Caucasus forms the easternmost extent of the NW-SE
trending Greater Caucasus orogenic belt, which runs from the Black Sea in the west to the
Caspian Sea in the east (Fig. 6.2) (e.g. Bochud 2011). The EGC sits on the southern-edge
of the Scythian Platform, which represents the southern margin of the Eastern European
continent (Saintot et al. 2006). The exposed EGC is mainly composed of Mesozoic-aged
sediments that accumulated during multiple phases of extension and convergence related to
sequential closure of the Tethys toward the south (Golonka, 2004; Vincent et al. 2007).
Most of these Mesozoic tectonic events occurred in the Jurassic, with Upper Triassic-
Lower Jurassic compression followed by Lower- to Mid-Jurassic rifting and compression,
and Upper Jurassic rifting and compression (Bochud 2011). These tectonic events are

recorded by major thickness variations across the Middle Jurassic interval (Fig. 6.3).
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The Lower Cretaceous of the EGC was deposited within an unstable marine
environment, as recorded by frequent mass-wasting events and major thickness changes
across the interval (Egan et al. 2009; Bochud 2011). Subsidence increased through the
Lower Cretaceous and into the eatly Upper Cretaceous due to back-arc extension
associated with the opening of the West Black Sea Basin to the west (Nikishin et al. 2001),
resulting in deep-marine deposition of extensive mudstones interspersed by submarine

landslide deposits and terrigenous sediments (e.g. Brunet et al. 2003).

The remainder of the Cretaceous sequence was deposited during a period of
thermal subsidence on a southward-dipping slope, with the basin divided into a series of
sub-basins (Bochud 2011). One of these sub-basins, the Buduq Trough, encompasses our
study area. The Cretaceous stratigraphy is dominated by calcareous and siliciclastic
turbidites and conglomerates interbedded with hemipelagic marls and mudstones (e.g.
Brunet et al. 2003). A number of intra-Cretaceous unconformities are seen within the basin
and are related to periods of compression (Egan et al. 2009) or sea-level fluctuations. The
end of the Cretaceous sequence is represented by a Base-Cenozoic unconformity formed

during Paleogene compression (Bochud 2011).
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Figure 6.3: Stratigraphic section trending roughly north-south across the five main structuras

zones (from Bochud 2011) of the EGC. Flattened along the top of the Cretaceous, located on

Figure 2.

Collision of the Arabian and Furasian plates in the Oligocene (Vincent et al. 2007)

deformed the Mesozoic and eatly Cenozoic succession into a series of exhumed synclines

bound by major faults. These faults separate distinct structural zones within the EGC (Fig.

6.2; 6.3) (Bochud 2011).

6.4 The Buduq Trough

The Buduq Trough is preserved in the east-west trending Qonagkend structural

zone (Fig. 4) and has been interpreted as an Upper Cretaceous ‘paleo-valley’ incised into

Lower Cretaceous deep-marine sediments and Upper Jurassic limestones following a

period of compression (Fig. 2B) (Egen et al. 2009; Bochud 2011). It is likely that this

compression was related to far-field tectonism in the eastern Black Sea (Sosson et al. 2010),
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which overprinted the subsidence that characterised the Cretaceous of the EGC. The
earliest fill of the Buduq Trough is preserved in the east and is represented by Cenomanian
- Turonian sandstones and conglomerates (Fig. 6.2) (Bochud et al, 2011). The nature of this
transition varies across and within the Trough; with the Cenomanian-Turonian
conformable with the Aptian-Albian at Mt. Kelevudag (Kopaevich et al. 2015) and sitting
directly on Barremian at Khirt (Fig. 6.2; 6.3). The overlying Coniacian-Maastrichtian is
represented by mixed siliciclastic-carbonate turbidites and is conformable with the
Cenomanian-Turonian in the west. In the east, near Cek, the Cenomanian-Turonian is
absent, with the Campanian directly overlying Aptian-Albian thin-bedded mudstones,
submarine landslide deposits and predominantly siliciclastic turbidites (Fig. 6.2; 6.3). Upper
Cretaceous oceanic red beds (CORBs) are also seen throughout the Upper Cretaceous
sequence, particularly in the Coniacian — Campanian turbidites and marls, indicating

periodically oxic deep-marine conditions (e.g. Hu et al. 2005).

6.5 Data and Methods

The data set comprises 23 sedimentary logs, totalling 500 m, collected across the
Buduq Trough (see supplementary material). Logs were generally collected at 1:25 scale.
Bedding and structural data (Fig. 6.4) and palaecocurrent data (Fig. 6.5) were collected to
ground truth the geological map and cross sections of Bochud (2011). Palacocurrent
readings were quite rare and were taken only where sedimentary structures were clear
enough to permit unambiguous data collection. Sparse biostratigraphic data (Bochud 2011)
hinders precise correlation across the study area. Chrono-stratigraphic subdivision of the
Buduq Trough are still being refined (cf. Bochud 2011; Bragina & Bragin, 2015; Kopaevich
et al. 2015), possibly due to the litho-stratigraphic similarities between the units and the
complex paleo-topography in which they were deposited (Egan et al. 2009). Therefore we
use mapped stratigraphic units (J1, J2, Ki, K; etc.) and lithostratigraphy to suggest associated
ages (Bochud 2011). Sedimentary logs were used to develop a lithofacies scheme (Fig. 6.6,
Table 1) and facies associations (Fig. 6.7).
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Cretaceous Structure of the Qonagkend Zone

I IC(N=17) MWW UC (Cek) (N=58) W UC (Qonagkend) (N=15)

Figure 6.5: Equal area stereographic projection showing bedding readings for Cretaceous stratigraphy across
Qonaqkend Zone. Bedding planes shown as lines and poles to bedding shown as dots. Colonred by
stratigraphy and location; LC- Lower Cretaceons, UC- Upper Cretaceons. Structural data reveals a
shallow-moderate structural dip to the north and south, in agreement with the east-west trending structura

zones of the EGC.

Cenomanian-Turonian Paleocurrents Conacian-Santonian Paleocurrents Campanian-M richtian Paleocurrents
(Qonagkend) (Qonaqgkend) (Cek)
N =18 N=5 N =33
N N N

S S S
Figure 6.4: Rose diagrams from palacocurrent indicators (ripples, sole marks, cross-stratification) from the

Cretaceons stratigraphy of the Qonagkend Zone. Readings have been corrected for tectonic tilt and are subdividea

by stratigraphy and location (see Figure 6.2).

Over 10,000 sedimentological measurements (e.g. bed thickness, grain size, facies)

were collected and quantitatively analysed (Appendix D). Stratigraphic logs were assigned
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one of seven facies associations (Fig. 6.7) in order to quantitively compare bed statistics

across deep-marine sub-environments (Fig. 6.8; 9; 10; 11).
6.6 Results

Lithofacies

Carbonate and siliciclastic lithofacies presented in Table 1 and Fig. 6 represent beds
deposited by individual events (event beds) and are classified based on outcrop
observations. ‘Mud’ is used here as a general term, for mixtures of clay, silt and organic

fragments.

Facies Associations

Facies associations have been interpreted based on the dominant lithofacies (Fig. 6,
Table 1) and architecture of a given succession and are subdivided into siliciclastic and
mixed (carbonate and siliciclastic) associations (Fig. 6.7). Facies associations FA1, FA2 and
FA3 are Cenomanian-Turonian and FA 4, FA 5, FA 6 and FA 7 are Coniacian-
Maastrichitan (Bochud 2011). Facies associations commonly used for lobes (Prélat et al.
2009; Spychala et al. 2017) and channels (Kane & Hodgson, 2011; Hubbard et al. 2014)

best fit our observations.

Table 6.1: Summary of observations and interpretations of lithofacies, used o create facies associations
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Facies

Conglomerates
@A)
Poorly sorted

clast rich deposit

)

Thick-bedded

sandstones (C)

Description

0.1 to 3 + m thick beds of pootly-
sorted, disorganised conglomerates.
Most  commonly  clast-supported
consisting of sub-angular to sub-
rounded boulder-, cobble- and
pebble-sized clasts of limestone and
sandstone. Matrix comprises a
pootly-sorted mix of all finer size
fractions. Cm — 10s cm scale mud-
clasts occur sporadically throughout
the beds. Bed bases are often erosive,
and can be amalgamated. This facies
often grades into thick bedded
sandstones (C).

0.1 — 1+ m thick poorly sorted
deformed, matrix-supported units.
Matrix can range from mudstone to
and is often

coarse sandstone,

pootly-sorted and sheared. Clasts

include cm-m scale limestone and

sandstone blocks, rafts of
remobilised  folded  thin-bedded
sandstones, sporadic pebbles and

granules and frequent mud-clasts.
These deposits are commonly non-
graded, but can show weak normal-
grading.

0.5 — 1+ m brown siliciclastic fine-
granular  sandstones.  Normally-
graded or non-graded and typically
lacking in primary depositional
structures. Bases are often sharp and
erosive. Parallel laminations are
sometimes present at bed tops and
mud-clasts can  be  observed
throughout. Weak cross-lamination is

infrequently observed.
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Interpretation

The characteristics of this facies suggest
deposition from debris flows having cohesive
as well as frictional strength (Fisher, 1971;
Nemeck & Steel, 1984). The grading of
conglomerates into thick-bedded sandstones
reflects the transiion of hyperconcentrated
debris into  highly-
(Mulder &

Alexander, 2001; Sohn et al. 2002), due to the

submarine flows

concentrated turbulent flows
entrainment of ambient water (Postma et al

1988).

The pootly-sorted matrix and large clast sizes
are suggestive of ‘flow freezing’ of a flow with
yield strength (Inverson et al. 2010), indicating
‘en masse’ deposition from a laminar flow
(Nardin et al. 1979; Inverson 1997; Sohn 2000).
Remobilised thin-bedded sandstones and intra-
basinal clasts indicate localised mass failure and

reworking.

The general massive structuration of these
deposits  suggests that they represent rapid
aggradation beneath a highly concentrated but
turbulent and are thus
interpreted as  high
(Lowe, 1982; Mutti 1992; Kneller & Branney

1995).

dominantly flow,

density  turbidites



Mixed
siliciclastic and
calcareous

sandstones (D)

Medium-bedded
calcareous

sandstones (E)

Medium-bedded
siliciclastic

sandstones (F)

0.1-lm beds of medium-bedded

calcareous sandstones with

punctuated intetbeds of cm-scale
thin-bedded siliciclastic  sandstone,
either as continuous beds or lenses.
The  medium-bedded

calcareous

sandstones are massive and the
siliciclastic beds are often erosively-
based and show tractional structures

(ripple

Siliciclastic beds can be amalgamated

and planar lamination).
with each other or isolated between
calcareous siltstones or sandstones.

0.1-1 m thick beige beds of
calcareous siltstone -fine sandstone.
Normally-graded or non-graded.
Planar lamination may be present,

but other tractional structures are

rare. Beds can be amalgamated.

0.1 -0.5 m thick brown beds of very
fine — granular grained, commonly
normally-graded, sandstones.
Inverse-grading  is  infrequently
observed. Basal parts of the bed are
often structureless containing
infrequent cm-scale mud-clasts while

tops are rich in tractional structures

including  parallel, rpple and
hummock-like laminations. Bed bases
are often erosive, and can be
amalgamated.
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Medium-bedded calcateous sandstones are
interpreted to represent deposition from a
slowly aggrading dilute turbidity current.
Periodic, thin-bedded siliciclastic sandstones
represent deposition from a relatively quickly
aggrading dilute turbidity current, which
interacted with a much slower aggrading

calcareous turbidity current.

Based on their tractional structures and
normal-grading, beds are interpreted as having
being deposited from dilute turbidity currents.
These beds are interpreted as medium-density
turbidites, due to larger bed thickness and
infrequent tractional structures, than thin-
bedded calcareous sandstones (G). Thicker
beds and fine grain size indicate a slowly
aggrading dilute turbidity current.

Based on their tractional structures and
normal-grading, beds of this lithofacies are
interpreted as deposition from a dilute turbidity
current. These beds are interpreted as medium-
density turbidites due to their bed thickness
and common lack of structures in the lower

part of the bed (e.g. Soutter et al. 2019).



Thin-bedded
calcareous

sandstones (G)

Thin-bedded
siliciclastic

sandstones (H)

Bi or tri-partite
beds (I)

0.01 — 0.1 m thick beige beds of
calcareous siltstone-fine sandstones.
Can be normally-graded, often into
silty-mudstones, or not graded.
Planar laminations are observed but
other tractional structures are
typically absent. Individual beds are

often amalgamated.

0.005 — 0.1 m thick brown beds of

siliciclastic ~ very ~ fine-  granular
sandstones. Commonly normally-
graded, occasional inverse-graded.

Tractional structures (planar, ripple,

hummock-like and convolute
laminations) and sporadic mud-clasts
are obsetved. Bases can be flat or
weakly  erosive and  sometimes
contain granules. Bed tops are often
flat. Where present, ripples can show
opposing palacoflow.

0.05-0.5 m thick beds that contain
multiple patts. Typically consisting of
a lower fine-coarse sandstone
(division 1) overlain by a pootly-
sorted muddy siltstone — medium
sandstone (division 2). Division 3 is
sometimes present consisting of a
siltstone-fine  grained  sandstone
loaded into division 2. Divisions 1
and 3 sometimes contain planar
laminations and sporadic cm scale
mud-clasts. Division 2 is often highly
deformed and rich in mud-clasts and
very coarse sandstone to pebble-

grade clasts.
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Thin-beds, fine grain size and weak planar
laminations represent deposition from a low-
concentration turbidity cutrent (Mutti 1992;
Jobe et al. 2012; Talling et al. 2012), indicating
these beds are low-density turbidites. Fine grain
size, thicker beds compared to thin-bedded
siliciclastic sandstone (H) and absence of ripple
laminations suggest slowly aggrading, dilute
remnants of a turbulent flow, (Remacha &
Fernandez 2003; Bell et al. 2018), which did not
reach significant velocity to generate ripple
laminations (Baas et al. 2016).

Thin-bedded, sandstones

structured are

interpreted to be deposited from low-
concentration turbidity currents (Mutti 1992;
Jobe et al. 2012; Talling et al. 2012) and are
therefore interpreted as low-density turbidites.
Ripples with opposing palacoflow suggests

topographic interference.

Tractional structures in division 1 and 3
indicate formation under turbulent flows. Poor-
sorting and mud content suggest division 2 was
transitional-laminar

partite beds

al.  2009),

deposited  under a
flow regime. These bi-tri
are hybrid beds (Haughton et
transformation ~ from

Such

generated by flow

turbulent to laminar. transformation
occurs through flow deceleration (Barker et al.
2008; Patacci et al. 2014) and by an increase in

concentration of fines during flow run-out

(Kane et al. 2017).



Mudstone (J) 0.005 — 8 m thick pale grey or red Low energy conditions, representative  of
mudstone — fine siltstone beds, background sedimentation via suspension
which are friable and often inferred fallout. Laminations may be present below the
in areas of missing section. Planar scale visible in outcrop, representing deposition
laminations, discontinuous drapes from a dilute turbidity current (Boulesteix et al.
and lenses of siltstone may be 2019). Pale colour indicates low total organic
present. Commonly calcareous in carbon (TOC). Red beds are similar to
composition. Red beds are common  Cretaceous Oceanic Red Beds (CORBS)
at the base of the Campanian. described across Europe (Wang et al. 2005; Hu

et al. 2005; Wagreich & Krenmayr, 2005) and
represent deposition below the carbonate
compensation depth (CCD) in a deep oceanic

basin.

Siliciclastic Facies Associations
FA 1: Lobe Fringe

Observations: FA 1 is dominated by metre-scale packages of thin-bedded
siliciclastic siltstones to fine-grained sandstones with subordinate mudstones and medium-
bedded siliciclastic sandstones (Fig. 6.7A). Beds are laterally extensive for 100’s of metres
and are commonly flat based and flat topped, often showing normal-grading from fine
sandstone to siltstone. Planar and convolute laminations are observed in the upper part of

many beds. Debrites, hybrid beds, conglomerates and thick-bedded sandstones are absent.

Interpretations: Thin-bedded, structured sandstones are interpreted to be
deposited from low-concentration turbidity currents (Mutti et al. 1992; Jobe et al. 2012;
Talling et al. 2012). The lack of hybrid beds and the thin-bedded nature, lateral-extent, fine-
grain size and lack of ripple-stratification indicate deposition in a distal lobe fringe (Fig. 6.9)

(Mutti 1977, Prélat et al. 2009; Marini et al. 2015; Spychala et al, 2017).

FA 2: Channel Axis

Observations: FA 2 is composed of metre-scale thick-bedded medium-pebbly
sandstones and conglomerates with lesser medium-bedded sandstones and rare thin-
bedded sandstones, mudstones, debrites and hybrid beds (Fig. 6.7B). Within the

Cenomanian-Turonian succession, FA 2 has the highest frequency of thick-bedded
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sandstones, conglomerates and bi-tripartite beds (Fig. 6.9). Conglomerates often grade
normally into thick-bedded sandstones, commonly associated with a grain size break, with
coarse-granular sandstone grade often missing. Where conglomerates do not grade into
thick-bedded sandstones they are amalgamated or are less commonly separated by thin
beds of mudstone. Conglomerates are poorly-sorted, clast-supported and contain sub-
angular — sub-rounded clasts of limestone, sandstone and mudstone that often crudely
grade from cobbles to pebbles upwards (Fig. 6.11). Conglomerates also often contain
disarticulated shelly fragments. Sandstone and conglomerate bases are almost always

erosional.
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Figure 6.6: Facies photographs. Facies described in detail in Table 1. Scale is either lens cap (52
mm), person (1.74 m) or indicated. L.DT; low density turbidite, MD'T; medinm density turbidite,
Db, debrite (poorly sorted clast rich deposit); Tby Turbidite, S; Siliciclastic, C; Calcareous. A)
Caleareons mudstone B) Calcareous low density turbidite and mixed beds (of siliciclastic and
caleareons low density turbidites). C) Two bi-partite beds consisting of a lower turbidite and an upper
debrite, in this case both siliciclastic, overlain by two siliciclastic low density turbidites. D) Evidence for
facies scale mixing (sensn Chiarella et al. 2017); calcareous turbidites were recognised in the field by
their pale cream colour, while siliciclastic turbidites were brown-orange in colonr and contained visnal
guartz, granules. Calcareous turbidite probably accummnlated slowly based on their grain size, and were
punctuated by siliciclastic gravity flows, forming mixed beds. E) Siliciclastic low and medinm density
turbidites with cm-scale mud clasts weathered out. F) Mudstone and low density turbidites (both
calcareons and siliciclastic) punctuated by metre-scale amalgamated conglomerates. G) Chaotic, clast
rich-deposit with deformed, non-extensive bedding. Camera lens cap circled in green. H) Erosionally-

based, crudely cross-laminated siliciclastic high density turbidite vich in mud clasts.

Thick-bedded sandstones are often normally-graded but can be non-graded or
inversely-graded. Decimetre scale mud-clasts are common throughout thick-bedded
sandstones and low angle cross-stratification is infrequently observed. Thin- to medium-
bedded sandstones often have erosional bases and contain convolute, hummock-like and
planar laminations and are normally-graded, with rare examples of inverse- or non- grading,.
These sandstones are either amalgamated or separated by 10 cm thick mudstone layers, and
often contain mud-clasts throughout the bed with granules concentrated at the bed base.
Sporadic debrites are also seen within FA 2; these have a deformed mudstone matrix and
contain clasts of limestone and sandstone. Hybrid beds are amalgamated into 30-50 cm
packages, with individual beds commonly consisting of a thin 2-4 cm fine-medium grained
sandstone overlain by a clast and shelly fragment rich 8-12 cm muddy very fine sandstone
debrite.

‘Off-axis’ successions have fewer thick-bedded sandstones and conglomerates than FA 2,
but more than FA 3, and fewer thin-medium, thick-bedded sandstones than FA 3, but
more than FA 2 (Fig. 6.9).

Interpretations: The thick-bedded nature, coarse grain size, amalgamation, erosion
and entrainment of clasts within the sandstones suggests that the parent flows were highly
energetic and capable of eroding and bypassing sediment (Mutti 1992; Stevenson et al.
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2015) and are thus these beds are interpreted as high density turbidites (Lowe 1982). The
poorly-sorted nature of the conglomerates suggests that they were initially deposited by
laminar flows (Sohn 2000), however apparent grading of conglomerates into thick-bedded
sandstones could reflect the transition of hyper-concentrated submarine debris flows into
highly-concentrated turbulent flows (Mulder and Alexander, 2001) due to entrainment of

ambient water (Postma et al. 1988; Kane et al. 2009).

The transition from conglomerates to medium-very coarse sandstone is associated
with a grain size break, often missing the granule fraction, suggesting bypass of flow
(Stevenson et al. 2015). The coarse-grain size and basal location of the conglomerates with
respect to thick-bedded sandstones suggests these beds could have been deposited as
channel-base lags (Hubbard et al. 2014). Erosionally-based lenticular sandstones grading
from cobble- to fine-sandstones are interpreted to represent submarine channel fill (Jobe et
al. 2017; Bell et al. 2018). This facies association is consistent with gravelly-conglomeratic
deposits reported elsewhere to represent submarine channel axis deposition (Postma, 1984;
Nemec & Steel 1984; Surlyk 1984; Dickie & Hein, 1995; Kane et al. 2009; Li et al. 2018;
McArthur et al. 2019; Kneller et al. 2020).

While typically related to storm deposits (e.g. Hunter & Clifton, 1982), hummock-like
cross-lamination have been interpreted in deep marine environments elsewhere as anti-
dune stratification (Mulder et al. 2009), bottom current deposits (Basilici et al. 2012) and
reworking of an initial deposit by a subsequent flow (Mutti 1992; Tinterri et al. 2017). The
channel axis interpretation of FA 2 speculatively suggests anti-dunes formed by

supercritical flows are the most probable interpretation of these hummock-like structures

(Araya & Masuda, 2001; Alexander, 2008).
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Siliciclastic Facies Associations

FA 5: Lobe off-axis

Mixed Facies Associations

-ms

Key to all logs [siiciciastic wbidte [ siicictastic debrite MM siiciciastic Ecaicitubisite MM caici-gebrite =] Clasts (coloured by lithology)
E= Planar lamination Ripple lamination Cross bedding [ Granular horizon [+ Convolute lamination [==]wavy bedding [~ Beds <2 cm thick
= Erosional contact Slump =] Mud clasts Amalgamation [=] sporadic pebble

Figure 6.7: Type excamples of the seven recognised facies associations, divided into siliciclastic and mixed (siliciclastic
and calcareons) associations, by orange and blue boxes respectively. Scale either lens cap (52 mm), person (1.74 m) or
indicated. 10 m type log is taken from representative logged section of each facies association. Cretaceous Oceanic Red

Beds; CORBS.
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FA 3: Channel Margin

Observations: FA 3 comprises thin-medium bedded fine-granular sandstones in
30-80 cm packages interbedded with 10-90 cm dark mudstones (Fig. 7C). Within the
siliciclastic Cenomanian-Turonian succession FA 3 has the highest frequency of thin-
medium bedded sandstones (Fig. 6.9). Conglomerates and thick-bedded sandstones are rare
in FA 3 (Fig. 6.9). Thin-bedded sandstones and the upper part of medium-bedded
sandstones can be argillaceous, with visible micaceous grains and are often planar, ripple
and convolute laminated, with rarer hummock-like laminations. Sandstones are often
normally-graded but inverse-grading is also observed. Beds of medium thickness are rich in
mud-clasts and commonly amalgamated along mud-clast laden surfaces, bases can be
highly erosive and scour-like, removing a significant proportion of the underlying bed.
Thin-bedded sandstones can be flat or erosively-based, commonly scoured; where bases are
erosional the lowermost part of the bed is commonly rich in granule-grade material (Fig.
0.7C). Granules and coarser fragments are composed of limestone and sandstone.
Infrequent hybrid beds are composed of medium-coarse grained siliciclastic sandstone,

overlain by a muddy, occasionally marly fine sandstone debrite.

Interpretations: The thin-bedded nature and presence of tractional structures
indicate that this facies association was deposited by a low-density turbidity current (Lowe
1982). Presence of hummock-like laminations could indicate storm-wave influenced
deposition (Harms et al. 1975), however their presence within a succession containing
thick, dark mudstones and frequent sediment gravity flows suggests a deep-marine origin.
Anti-dune formation (Mulder et al. 2009) and tractional reworking of an aggrading deposit
(Mutti 1992; Tinterri et al. 2017; Bell et al. 2018) have both been interpreted to form similar
hummock-like lamination in deep marine environments. Clean sandstones which grade into
argillaceous, micaceous sandstones could indicate transitional flow deposits (Sylvester &
Lowe 2004; Baas et al. 2009; Kane & Pontén 2012). The thin-bedded, coarse grain size and
erosive nature of these deposits, along with the presence of supercritical bedforms, is
similar to the overbank deposits seen adjacent to bypass-dominated channels (Kane &
Hodgson 2011; Hubbard et al. 2014; Jobe et al. 2017; Lin et al. 2018; McArthur et al. 2019).
These similarities, coupled with the along strike location of FA 3 adjacent to FA 2 (channel

axis), has led to the interpretation of FA 3 as a channel overbank (Fig. 6.9). The lateral
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transition of FA 2 and 3 is indicative of ‘on-axis’ to ‘off-axis’ channel-belt facies (Kane et

al. 2009).
Coniacian-Maastrichtian Bed Statistics
N 260 m 490 m s
120 b 350 4
b 300 400 g 1 2
100 ,;. r .
- " « 250 »
I e e .. 2 . & 300 S
: E 200 ;
Z 60 l z z
o L - 150 - 200
3 L F H &
» 100 [ IS —
/) 100
201 50
p -
0 : T : 0 : ! - 0 : : '
0 200 400 600 0 200 400 600 0 200 400 600
Bed Thickness (cm) Bed Thickness (cm) Bed Thickness (cm)
1201 At > ey b
@ of 1 ) | oo %% .
% 300 So 0o 400 b,
100 4 ®. % W ]
¢ F) . '-.’ 9* - ..'o ']
- . . L 250 cantee » ¢ SR
2 801 L8 s 8 () 2% 2 3001 s ST get e
E . £ 200 - ot 8, £ LK
2 60 e 2 ':'-.'; e 2 PNt
° ol 5 150 1 ‘n’e 3 200 e B
@ i o', 1* @ S @ - I
40 o ie 100 PR 2 ST o,
-.. " . ::*‘. R 100 1 '“': Padt)
20 4 KN 50 sty '-i.' "
. o4 .o :‘o . [ L4
0 ; i i 0 ; L LL B 0 - ;
107t 10° 10! 102 107t 10° 10t 10? 107t 10° 10! 10?2
Bed Thickness (cm) Bed Thickness (cm) Bed Thickness (cm)
350 1
120 - JR S ¢ ! ¢ 9
i i [ ] 300 ! 400 - ' ]
100 A H ’ ¢ ! .
. g 8 525078 5 | :
3 80 B 2 : 2 300 SR
E ' E 200 i E :
E { ] 3 3 ']
Z 604 i s z z i e
- . H o 150 1 . - 200 4 I : .
1 : . o P 2 I &
@ 40 ¢ @ ' : @
| 100 1 - i 4
20 | ] ) . ] ; i 100 A
: [ 50 1 ! . '
0 : : 0 ! : ¥ 0 +
s VF F M C+ Cg S VWV F M C+ Cg S VF F M  C+ Cg
Grain-Size Grain-Size Grain-Size

Figure 6.8: Quantitive facies analysis for Coniacian-Maastrichtian stratigraphy. The three columns represent

three different logged sections from north to south that are representative of northern margin, axis and southern

margin of the basin respectively. Charts compare bed number (with 1 being at the base of the log and 200 at the

top) to bed thickness (linearly in the top colummn and logarithmically in the middle column) and logged grain size

(in the basal column). Where grain size varies within the bed average grain sige is used. In the top column thick

beds are highlighted with a dashed line. Colonrs are for visual separation of data, and meaning changes per

column, blue are thin/ fine beds/grain-size, oranges are thick/ coarse beds/ grain-sizes. Scales for bed number

vary across the rows.
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FA 4: Lobe Axis

Observations: FA 4 is dominated by > 1 m thick packages of amalgamated
conglomerates (Fig. 6.7D; 6.9) interbedded with thin-thick bedded very fine - very coarse
sandstones. Within the Coniacian-Maastrichtian succession, the thickest conglomerates are
found within FA4 (Fig. 6.8). The conglomerates are laterally discontinuous, erosionally-
based, and are either flat-topped when onlapping, or convex-up when downlapping, the
slope (Fig. 6.7; 6.12). Conglomerates increase in frequency, clast size (up to cobble-grade)
and thickness, up stratigraphy (Fig. 6.8) and contain sub-angular to rounded clasts of
limestone, sandstone and mudstone (Fig. 6.11). Within the Coniacian-Maastrichtian
stratigraphy the greatest number of amalgamated beds is in FA4 (Fig. 6.10) and the largest
grain size range (majority of beds between very-fine sandstone to medium grained
sandstone) is observed (Fig. 6.8). Within FA 4, a coarser grain size class (of coarse grained
sandstone or above) is observed which is almost absent in other Coniacian-Maastrichtian

facies associations (FA 5, FA 6, FA 7) (Fig. 6.8).

Interpretations: Amalgamation of event beds suggests parent flows were energetic
and capable of eroding sediment into the flow (Lowe 1982; Stevenson et al. 2015) and
amalgamation of conglomerates indicates deposition in a debris-flow dominated
environment (Surlyk 1984; Postma 1984; Dickie & Hein, 1995), similar to the debris flow
dominated lobes described by McHargue et al. (2019). These conglomerates could also
represent sediment bypass within lobe axes (e.g. Kane et al. 2009) or channel fill
conglomerates (e.g. Knaust et al. 2014), however their thickness, stacking and geometry are

most likely to represent deposition in the axis of a debris-flow dominated lobe.

Mixed Facies Associations
FA 5: Lobe Off-Axis

Observations: FA 5 is represented by erosively-based thin- to medium-bedded,
fine-coarse grained siliciclastic sandstones and thin- to medium-bedded fine-grained
calcareous siltstones, conglomerates and fine sandstones (Fig. 6.7E, Fig. 6.8). Sandstones
with siliciclastic bases and calcareous tops are present throughout and are often
amalgamated with siliciclastic and calcareous sandstones, forming packages separated by
mudstones and silty-mudstones. Calcareous beds are typically flat-based when overlying

mudstones, whilst siliciclastic beds are commonly erosive. Calcareous siltstones and
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sandstones are massive, whilst siliciclastic sandstones show planar, convolute and ripple
laminations, but can also be structureless. Debrites are interspersed, often incorporating

thin-bedded calcareous siltstones and sandstones. Hybrid beds are rare (Fig. 6.9).

Upper Cretaceous Facies Associations
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Fignre 6.9: Quantitive facies analysis for Upper Cretaceons stratigraphy, divided into
Cenomanian-Turonian channelised siliciclastic deposition and Coniacian — Maastrichtian
mixced lobe deposition. Facies refer to HB: hybrid bed (bi and tri-partite beds); I.DT: lon
density turbidite; MD'T: medinm density turbidite; HD'T: high density turbidite; Db: debrite
(poorly sorted clast rich deposit) and Cg: conglomerate. Coloured by type log for different sub-

environment. Density is a probability density function.

Interpretations: The presence of both calcareous and siliciclastic sandstones
suggests deposition in a mixed system (Fig. 6.1; 6.10) (Al-Mashaikie & Mohammed, 2017,
Chiarella et al. 2017; Walker et al. 2019). Structureless medium-bedded calcareous siltstones
and sandstones are interpreted to represent deposition from medium density turbidity
currents (Kneller & Branney 1995; Talling et al. 2012; Soutter et al. 2019) aggrading quickly
enough to prevent tractional sedimentary structure development in their basal divisions
(Kneller & Branney 1995; Sumner et al. 2008). This depositional process is complicated
within the calcareous medium-bedded deposits, which appear to have aggraded much more
slowly than their siliciclastic counterparts, as evidenced by thin-bedded and medium-
grained siliciclastic beds being deposited within medium-bedded and fine-grained
calcareous beds. The presence of medium-density turbidites, relatively coarse grain size and

common amalgamation suggests lobe off axis deposition (Prélat et al. 2009; Spychala et al.

2017).
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Coniacian-Maastrichtian Bed Statistics
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Figure 6.10: Quantitative analysis of Coniacian-Maastrichtian mixed stratigraphy comparing bea
composition (carbonate or siliciclastic) against bed number. Using the same logged sections as Figure 8, ana

thus a different number of beds per log resulting in variable bed number scale.

FA 6: Proximal Fringe

Observations: Primarily composed of normally-graded, thin-medium bedded
calcareous very-fine to fine-grained sandstones and siltstones, with subordinate thin-
bedded siliciclastic fine-medium sandstones and mixed siliciclastic and calcareous
sandstones (Fig. 6.7F; 6.8; 0.9). Calcareous siltstones and sandstones are flat based when
overlying mudstones, but are often erosive at amalgamation surfaces (Fig. 06.10).
Siliciclastic sandstones, either isolated or within mixed beds, are frequently < 3 cm thick,
with flat to weakly erosive bases (Fig. 6.6). Debrites are interspersed within FA 6 and often
rework the thin-bedded calcareous siltstones and sandstones. Planar laminations are

common within the thin-bedded siliciclastic and calcareous sandstones. lL.ess common
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Chapter 6:Evolution of a mixed siliciclastic-carbonate system on an unstable margin: the
Cretaceous of the Eastern Greater Caucasus, Azerbaijan

ripple laminations show multiple and opposing palacocurrent orientations. Hybrid beds are

rare (Fig. 6.9).

Conglomerate Clast Distributions

~Cenomanian ~Campanian ~Maastrichtian

y @

N=100
mmm Carbonate [ Sandstone B Mudstone

N=100

Figure 6.11: Pie charts showing composition of clasts within conglomerates per stratigraphic age, taken
from 100 clasts from representative conglomeratic beds of over 1 metre thick. Percentage equates to
absolute number of dlasts, as 100 are sampled. Carbonate clast content increases through time, discussed

n text.
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deposition from low- (Lowe 1982; Mutti 1992) to medium-density turbidity currents based
on their bed thickness, fine grain size and structuration (Fig. 6.9) The thin-bedded
siliciclastic sandstones could represent the depositional products of flow transformation
from up-dip debris flows (i.e. the up-dip conglomerates) to turbulent flows following the
entrainment of ambient water (Potsma 1988; Haughton et al. 2009), which punctuate
slowly aggrading calcareous turbidites, interpreted to represent the remnants of dilute flows

(Remacha & Fernandez, 2003).

The preservation of both structured and structureless sandstones suggests an off-
axis location of deposition; similar preservation of both deposit types has been interpreted
in the proximal lobe fringe elsewhere (Prélat et al. 2009; Spychala et al. 2017; Soutter et al.
2019). FA 6 is differentiated from FA 5 based on its thinner beds and less frequent
erosional events, and is therefore interpreted as being more distal and deposited within the
proximal fringe. Hybrid beds are rare throughout the system therefore a distinction

between frontal fringe and lateral fringe is difficult to decipher (e.g. Spychala et al. 2017).
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FA 7: Distal Fringe

Observations: Dominated by laterally extensive, metre-scale packages of thin-
bedded amalgamated calcareous sandstones which are normally-graded from very fine —
fine sandstone to siltstone and are interbedded with metre-scale mudstones and silty-
mudstones (Fig. 6.7G; 0.8; 0.9). Beds are flat-based, flat-topped and frequently contain
both parallel and convolute laminations. Medium-bedded calcareous siltstones-fine
sandstones are present, and may reflect amalgamated thinner-beds which are difficult to
decipher. Debrites, siliciclastic thin-bedded sandstones and hybrid beds are rare (Fig. 6.9).
The smallest grain size range (between siltstone and very-fine sandstone) is observed in
FAG and FA7 (Fig. 6.8) and amalgamation is infrequent (Fig. 6.10). More thin beds are seen
in FA7 than elsewhere in stratigraphy (Fig. 6.7C; 6.8; 6.9).

Interpretations: Thin-bedded, structured sandstones are interpreted to be
deposited from low-concentration turbidity currents (Mutti et al. 1992; Jobe et al. 2012;
Talling et al. 2012). The presence of medium-bedded calcareous siltstones-fine sandstones
and lack of ripple laminations suggest slow aggradation from a turbulent flow (Remacha &
Fernandez 2003; Bell et al. 2018). Lack of ripple lamination suggests flows did not reach
significant velocity to generate ripple laminations (Baas et al. 2016), or turbulence was
suppressed near the bed due to high aggradation rates. The infrequency of hybrid beds and
siliciclastic beds within this facies association supports deposition within a carbonate
dominated environment and the thin-bedded nature, lateral-extent, fine-grain size and lack
of ripple-stratification suggests deposition in a distal lobe fringe (Mutti 1977; Prélat et al.

2009; Marini et al. 2015; Spychala et al, 2017).
6.7 Discussion

Nature of the Upper Cretaceous Topography

Toward the west of the Qonagkend Zone, Upper Cretaceous deep-marine
sandstones and limestones can be seen to thin towards, and onlap, Upper Jurassic
limestones (Fig. 6.12; 6.13; 6.14). These Upper Jurassic limestones must therefore have
formed 100s of metres of relief on the Cretaceous seafloor. The most likely mechanism for
the generation of seafloor topography is an allochtonous block (Fig. 6.13; 6.14; 6.15). The
presence of decametre-scale allochtonous blocks (mega-clasts of Blair & McPherson 1999)

and submarine landslide deposits throughout the Cretaceous stratigraphy indicates a highly
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unstable margin, supporting this view (Fig. 6.13; 6.15). The identification of a basin-scale
submarine landslide deposit, which forms the Qizilqaya and Shagdag mountains toward the
west, further validates this interpretation (Bochud 2011) (Fig. 6.15) with the mega-clasts in
the west possibly forming part of this deposit (Fig. 6.14; 6.15; 6.16). The contact is
therefore formed as the Cretaceous stratigraphy infilled the accommodation present on the

irregular surface of the deposit. Such relationships have been observed at outcrop (e.g.

Jurassic - Cretaceous contact

K Megaclast—

Figure 6.14: Evidence and model for the generation of topography by an allochtonous block

throughont the Cretaceons. A>B) field examples of Jurassic stratigraphy forming topography

throunghont the Cretaceons influencing sediment ronting. C) Schematic model showing formation

of topography
Burbank et al. 1992; Armitage et al. 2009, Kneller et al. 2018) and in the subsurface (Fig.
17) (e.g. Soutter et al. 2018, Casson et al. 2020). Differential compaction around these rigid

blocks will have resulted in steepening of strata adjacent to the block, which may
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contribute to the gradual steepening identified (Fig. 6.12; 6.14), which has been reported

elsewhere (e.g. Burbank et al. 1992).



Upper Cretaceous evolution of the Buduq Trough

Deep-marine deposition within the Buduq Trough began following a period of
compression and folding in the mid-Cretaceous (Fig. 6.16) (Egan et al. 2009, Bochud
2011). Evidence of this compression is seen within the earliest fill in the Trough, which is
preserved toward the east of the Qonagkend structural zone. This eatly fill is represented
by Cenomanian - Turonian conglomeratic slope channels that either erode into Barremian
deep-marine mudstones or sit conformably on thin-bedded Aptian-Albian siliciclastic
turbidites. These basal-Cenomanian stratigraphic relationships are suggested to be caused
by channels preferentially infilling lows present on seafloor, forming entrenched channel
axes that pinch-out laterally against Barremian mudstones (Fig. 6.16). These lows may have
formed during mid-Cretaceous compression and folding (Egan et al. 2009; Sosson et al.

20106) or through submarine slope failure and consequent scour-formation.

It is possible that pootly preserved thin-bedded Aptian-Albian turbidites represent
the distal extents of the Cenomanian slope channels that were either eroded by the
channels during progradation or deposited within isolated lows on the Barremian slope.
These lows may have formed in response to similar processes to those which entrenched
the Cenomanian channels. The abrupt nature of the transition from distal fine-grained
turbidite deposition to conglomeratic slope channels may correspond to either tectonic
rejuvenation during the Mid-Cretaceous compressional event (Fig. 6.16) (Egan et al. 2009)
and/or an abrupt relative sea-level fall, such as the eustatic sea-level fall seen in the mid-

Cenomanian (Miller et al. 2003).

Evidence for basinal topography is present during deposition of the Cenomanian —
Turonian, with the sequence almost entirely absent 10 km to the west at Cek, indicating the
presence of a relative high in this location. Submarine landslide thicknesses also increase
toward this high in the Barremian, suggesting the high influenced deposition from the
Lower Cretaceous until the Turonian. Previous work has shown the presence of a large
Lower Cretaceous submarine landslide toward the west (Fig. 6.16) (Bochud 2011), which is
likely to form the high and the complex stratigraphic relationships described previously
(Fig. 6.13; 6.14; 6.15). It is also likely that this submarine landslide, and other more minor
ones in the area, were emplaced during an earlier period of tectonism and instability related
to Lower Cretaceous compression (Fig. 6.16). Evidence for topography (Fig. 6.12) in the

Late Cretaceous is also evident on a smaller scale through paleocurrent reversals in low-
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density turbidites (e.g. Kneller et al. 1991) indicating a northward-dipping slope confining
southward-directed flows (Fig. 6.5; 6.12), and through the deposition of Upper Jurassic
blocks within the Turonian succession, indicating slope instability during this period (Fig.
0.13; 6.15).

Following the Cenomanian-Turonian regression the Trough begins to deepen again
during the Coniacian-Maastrichtian (CM), as represented by the deposition of laterally-
extensive, thin- to medium-bedded, mixed-siliciclastic-carbonate turbidites overlying the
slope channels (Fig. 6.16). The mixed-lithology of the turbidites contrasts with the
dominantly siliciclastic Aptian-Albian turbidites underlying the slope channels, indicating a
change in source or paleogeography between the Lower and Upper Cretaceous (Fig. 6.5;
0.16). The presence of thinning and facies changes toward present-day syncline margins,
frequent debrites and out-runner blocks, and divergent palacocurrent distributions indicates
that basinal topography had an impact on CM deposition (Fig. 6.5; 6.12; 6.13; 6.15). This
topography may have been formed by differential compaction over the rigid limestone
mega-clast, or external compression (Fig. 6.14; 6.15; 6.16). Erosional contacts are seen
within the CM succession at the base of small, metre-scale channel fills, which occur with
increasing frequency through time. These small channel fills are filled by conglomerates
and high-density turbidites with similar compositions to the underlying and much more
extensive slope channels. The channels are therefore interpreted as small distributary
channels in the axes of lobes that formed at the distal ends of the underlying slope
channels (e.g. Normark et al. 1979). The increasing frequency and thickness of these
conglomerates through the CM (Fig. 6.8) may therefore represent gradual progradation of
the slope channels following their abrupt backstep at the end of the Turonian. Clasts
within these younger conglomerates are also more limestone-dominated, which fits with
the transition to a more carbonate-dominated system through the Upper Cretaceous (Fig.

0.11; 6.16; 6.18).

Mixed-deep-marine deposition continues in the Buduq Trough throughout the
remainder of the Cretaceous until Palacogene compression ceases deposition (Bochud
2011), forming an unconformity between the Upper Cretaceous and overlying Palacogene

and Neogene sediments (Fig. 6.2; 6.3).
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Figure 6.16: Evolutionary model for the Cretaceons of the study area. Studied stratigraphic sections

highlighted. Topography, thought to be formed by a mega-clast, is present throughout the Cretaceons ana
influences deposition, discussed in text. Extract from the geological time columm, sea level fluctuations and
local tectonic events highlighted on the left. The Pre-Albian was dominated by limestone blocks on a muddy
slope. Thin-bedded siliciclastics of a distal lobe were deposited during the Aptian-Albian. Siliciclastic
channels are prominent throughont the Cenomanian-Turonian. In the Coniacian-Maastrichtian mixea
caleareous and siliciclastic lobes, of different sub-environments interact, and are likely sourced from the same

northern margin.
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6.8 A Subsurface Analogue for the Buduq Trough

A seismic-scale equivalent of a mixed-system analogous to the Cretaceous Buduq
Trough has been identified and is used as a comparison to the outcrop-based model. The
continental margin offshore The Gambia, NW Africa, developed through the Late
Cretaceous with remarkable similarities in timing and evolution to the Buduq Trough
(summarised in Casson et al. 2020 in press; Fig. 6.17). Unconfined mixed-systems
developed on the deep-marine basin floor are interpreted to have been line-fed through a
heavily canyonised unconformity surface (Fig. 17C). Seismic geomorphology reveals the
interfingering of siliciclastic-dominated and carbonate-dominated systems (i.e. at X and Y

Fig. 6.19), similar to that observed on facies and facies architecture scale in the EGC (e.g.

Fig. 6.6; 6.7).

Sediment gravity flows through the canyons eroded into the underlying carbonate
platform redepositing hundreds of metre-scale, seismically-resolvable carbonate mega-clasts
20+ km from the escarpment (Fig. 6.17B, D); our field work suggests that these blocks
may be associated with a multitude of different types and sizes of submarine landslides and
blocks that are below seismic scale (Fig. 6.13; 6.15). The presence of carbonate blocks and
lobe-architecture in the carbonate-dominated systems (sezs# McHargue et al. 2019) suggests
deposition by debris-flows (i.e. FA 4). Hence two stages of mixing occurs, firstly during
erosion to form mixed lithology flows, and then through deposition of interfingering
systems. Pervasively channelised siliciclastic-systems with single feeder channels show a
distinct seismic geomorphological response to their carbonate counterparts (Fig. 17D, E).
The lateral location along the margin of siliciclastic-dominated systems is conceivably
related to sediment input points (i.e. shelf-incising canyons) capturing an extra-basinal
source of siliciclastic sediment from the shallow marine environment, away from shelfal
carbonate factories. Basin floor topography is created by early deposits and influences
subsequent lobe deposition (Fig. 17), causing stacking and lateral migration of lobes, which
cannot be resolved in the Buduq Trough (Fig. 18) probably because the scale of the study

area is smaller than the scale at which migration occurred.

Documentation of ancient subsurface mixed-systems has been achieved from the
interpretation of seismic reflection data (e.g. Moscardelli et al. 2019, Casson et al. 2020). It
may also be possible that transitions from calcareous-dominated to siliciclastic-dominated

deep-marine systems, which are commonly associated with the rapid arrival (progradation)
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resolution. The role of mixed-system interactions on a petrographic scale, and therefore

fact represent short-lived mixed systems, which are often below the scale of seismic
their reservoir quality, remains unclear until such systems are further studied at outcrop or

sampled in the subsurface (Chiarella et al. 2017; Bell et al. 2018

oNsepRI|iS
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Mixed lobes

Lobe sub-environments: 1f individually observed, the siliciclastic system within
this mixed succession could be interpreted as stacked lobes, with axial, off-axial and fringe
sub-environments identified. The calcareous system, however, would be interpreted as
being predominantly lobe fringe deposition (Remacha & Fernandez 2003; Bell et al. 2018).
Since the two systems are mixed it is difficult to assign a single lobe sub-environment to a
sequence of beds as they represent the inter-fingering of two systems (Fig. 6.19). Due to
the interaction of these systems, siliciclastic lobe elements are likely to occur within
calcareous lobe elements (Fig. 6.1; 6.17; 6.19) (Prélat et al. 2009), forming stacks of mixed
event beds (D, Table 1). This is further complicated by often highly erosive siliciclastic
turbidity currents which can rework calcareous beds, as evidenced by calcareous rip-up
clasts within siliciclastic turbidites. This may remove individual calcareous lobe elements
from the rock record, and make stacking interpretations more difficult (Fig. 6.18) (Braga et
al. 2001).

Due to these complexities it is perhaps necessary to refer to such systems with a
more specific descriptor (e.g. mixed axis-fringe), or broadly refer to them as ‘mixed
systems’ in order to allude to their complexity and contrast them from siliciclastic-
dominated systems (Fig. 6.19). Use of the siliciclastic lobe hierarchy of Prélat et al. (2009)
is possible in mixed systems, but calcareous and siliciclastic descriptors are required (Fig.
0.19). It is possible to decipher the different systems in our field and subsurface examples,
due to their lithological differences being visually resolvable at outcrop (Fig. 6.6; 6.7) and
showing different seismic characteristics in the subsurface (Fig. 6.17; 6.19). However,
without detailed provenance and geochemical analysis it would be very difficult to decipher
the mixing of two siliciclastic systems or two calcareous systems, due to similarity in
depositional facies and thus seismic character. Unless an individual system can be followed
from source to sink in outcrop or the subsurface we must always consider the possibility of

multiple systems interacting, modulating each other and complicating stacking patterns

(Fig. 6.19).

Stacking patterns: Deep-marine stacking motifs can show either aggradational,

progradational, retrogradational or unorganized stacking patterns (Stow & Mayall, 2000,
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Deptuck et al. 2007; Straub et al. 2009; Prélat & Hodgson 2013), which can be modulated
by both external and internal processes (e.g. Ferguson et al. 2020). Our study shows that in
mixed systems it can be difficult to decipher stacking patterns within each individual system
due to the convolution of each system by the other (Fig. 6.18; 6.19). Bed thickness trends
within the calcareous turbidites are difficult to decipher, possibly due to their narrow grain
size range preventing the identification of thinner-beds, and amalgamation within thicker

beds (Fig. 6.18).

Siliciclastic conglomerates become more frequent and thicker throughout the
Coniacian-Maastrichtian, perhaps reflecting a progradation of the siliciclastic system (Fig. 8;
0.16). However, bed thickness and grain size analysis for the Coniacian-Maastrichtian do
not show any thickness trends or stacking patterns within the calcareous or siliciclastic
turbidites (Fig. 6.18). This suggests that in mixed systems it may therefore not be possible
to describe the progradation or retrogradation of an individual system, and only possible to
describe the relative ratio between the twoj; the apparent dominance of the mixed system
(e.g. if siliciclastic (s) > carbonate (¢) this could be due to progradation of s or by the
retrogradation of ¢, both of which are controlled by a number of external and internal

forcings).

On the scale of the outcrops (100s m), the calcareous turbidites appear to be sheet-
like, while the siliciclastic turbidites show thickness variation, representing more typical
channel and lobe geometries (e.g. Prélat et al. 2009). Conglomerates observed in the FA4
appear to be confined to isolated depocentres and pinch-out across meters - 10s of meters,
indicating the presence of subtle topography (Fig. 6.12). This suggests the deposition of the
conglomerates may have been controlled by depositional topography (compensational
stacking) and that the underlying calcareous turbidites do exhibit subtle, long-wavelength
thickness changes over a greater scale than observed at outcrop, influencing subsequent
sediment routing. Alternatively, the thinning of conglomerates was due to the basinal
topography present at this time, preventing these highly-concentrated flows running-out

over great distances (Fig. 6.12).
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Mixed-system origin: Previous work on mixed systems has correlated alternations
in calcareous and siliciclastic turbidites to 3™ order sea level cycles (Yose & Heller, 1989;
Miller & Heller, 1994); the alternations in the Buduq Trough are lower frequency than
these cycles but could be interpreted as fifth-sixth order sea level cycles (parasequences)
occurring on a 10,000 — 100,000 year cycle (Fig. 6.16) (Van Wagoner et al. 1990), related to
Milankovitch orbital cycling (Goldhammer et al. 1990; D’Argenio et al. 1999). Elsewhere
mixed systems have been interpreted to represent alternating cool-wet and cold-dry climate
cycles driven by precession orbital cycles (Garcia-Garcia et al. 2009). No obvious stacking
can be deduced in the study area (Fig. 6.18) preventing a confident interpretation to be

made regarding the forcings behind the high-frequency lithological variations.

Rugose carbonate platform margins (e.g. Saller et al. 1989; Grant et al. 2019,
Casson et al. 2020), like those observed in the Buduq Trough (Fig. 6.13; 6.16; 6.17), have
been proposed as conduits for siliciclastics without requiring a sea level change (Francis et
al. 2008; Braga et al. 2008; Puga-Bernabéu et al. 2014; Al-Mashaikie & Mohammed, 2017,
Walker et al. 2019). This could indicate that the calcareous deep-marine system in the
Buduq Trough is part of a much more extensive and line-fed system derived from shedding
of active carbonate factories perched on the shelf (e.g. Fig. 6.17). The contemporaneous
siliciclastic system may therefore have been derived from multiple point source conduits
along this margin that either 1) periodically punctuated this larger carbonate system or 2)
were long-lived conduits permanently bound by carbonate factories (Fig. 6.16) (Mueller et
al. 2017; Moscardelli et al. 2019). Two different sources for separate components of a
mixed system have been documented elsewhere (Fig. 6.1; 6.17; 6.19A) (Ditty et al. 1997;
Riaz Ahmad & Jamil Afzal, 2012; Poprawski et al. 2014; 2016; Chiarella et al. 2017). The
presence of Late Jurassic blocks (Fig. 6.13; 6.15) within the Cretaceous complicates this
model, with the blocks interpreted as either 1) Late Cretaceous failures from an exposed
Jurassic shelf, 2) out-running blocks from Lower Cretaceous failures (e.g. De Blasio et al.
20006) that were subsequently deposited around during the Late Cretaceous, or 3) blocks
that were periodically shed through the Late Cretaceous from high-relief Lower Cretaceous

slope submarine landslides identified in the west (Fig. 6.14; 6.10).

Palacoflow indicators are limited for the calcareous system due to lack of ripple
lamination developed in its fine-grained, slowly accumulating deposits (Baas et al. 2015). It

is therefore difficult to decipher whether these siliciclastic and calcareous systems were
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perpendicular, oblique or parallel to each-other. The palacoflow indicators that were
collected, however, are consistent with a provenance to the north (Fig. 6.5; 6.12; 6.15) A
northern provenance is also suggested from palacographic maps for the interval, suggesting

a Scythian platform source area (Nikishin et al. 1998).

Y=Mixed fringe
siliciclastic fringe-calcareous fringe,

RMS amplitude

X=Mixed axis-fringe V
(siliciclastic axis-calcareous fringe)

msvffm

Figure 6.19: Schematic showing potential interactions of calcareons and siliciclastic lobes in mixed systems. A
and B are RMS maps from Figure 17, which have been overlain by lobe complex geometries, as an
interpretation based on seismic facies analysis and understanding of regional source area (see Casson et al.
2020). X and Y represent log/ core through locations where the lobe complexes interact in A and B respectively.
X crosses the lobe fringe of the calcareons systemr and the lobe axis of the siliciclastic system and Y crosses the
lobe fringe of both systems resulting in a thinner and finer grained succession when compared to X. This
variability highlights difficulties arising from exporting sub-environment terminology developed in siliciclastic

systems (e.g. Prélat et al. 2009) into mixed systems

6.9 Conclusion

This study uses the Upper Cretaceous Buduq Trough, Azerbaijan to document the
characteristics of an unstable and mixed siliciclastic-carbonate system. Deposition in the
Trough is represented by a Cenomanian-Turonian submarine channel complex, which
transitions into a Coniacian-Maastrichtian mixed lobe succession. This sequence represents
an abrupt Cenomanian regression, probably related to a mid-Cretaceous compressional
event and/or an abrupt mid-Cenomanian eustatic sea level fall; followed by a relatively
abrupt late Turonian-Coniacian transgression, likely associated with subsidence caused by
back-arc extension. Throughout the remainder of the Cretaceous, the mixed-system
exhibits weak progradation. A westerly topographic high formed by a Lower Cretaceous
submarine landslide complex deposited during earlier compression is interpreted to have
prevented deposition of the Cenomanian—Turonian toward the west. This submarine

landslide complex may also have provided a lateral source for landslides through secondary
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remobilisation perpendicular to the regional palaeflow from the north. Bed pinch-out,
thinning, ripple reflections and debrites provide further evidence for the presence of

basinal topography during deposition.

The Coniacian-Maastrichtian mixed siliciclastic-calcareous deep marine system
contains both siliciclastic and calcareous lobe elements, which represent different lobe sub-
environments, requiring modification of terminology developed for siliciclastic lobes.
Mixed systems are also shown to have unique facies, both in outcrop and a subsurface
analogue from offshore The Gambia, reflecting differing depositional processes between
the systems operating contemporaneously. Interaction between the two deep-marine
environments characterising the mixed systems has also made stacking patterns difficult to

decipher, with each system attenuating the other.
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CHAPTER 7:The effect of variable topography on turbidity currents: physical

models and geological implications

Euan L. Soutter!, Daniel Bell', Zoé¢ A. Cumberpatch', Ross A. Ferguson', Yvonne
Spychala®, Tan A. Kane', and Joris T. Eggenhuisen®

'"Department of Earth and Environmental Sciences, University of Manchester, Oxford
Road, Manchester, M13 9PL, UK

*EuroSEDS, Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, NL

7.1 Abstract
The stratigraphic expression of deep-water systems records tectonic or climatic signals
from the hinterland, as well as the structural evolution of the basin in which they occur.
This expression may be modulated by basin and slope topography, which in deep-marine
basins affects turbidity currents and the deposits they generate at the sub-flow to basin
scale. Here, Shields-scaled physical models of turbidity currents are used to better
understand the processes that govern the architecture of submarine lobe deposits influence
by basin topography. The subaqueous topography consists of an erodible barrier orientated
1) parallel, 2) oblique and 3) perpendicular to the incoming flow. An unconfined control
run generated a supercritical turbidity current that decelerated across the slope, forming a
deposit that thickened basinwards before abruptly thinning. Flow-parallel confinement
resulted in erosion of the barrier by the bypassing flow, enhanced axial velocities, and
generated a deposit that extended 10% farther into the basin than when unconfined.
Oblique confinement caused partial deflection and acceleration of the flow along the
barrier, which resulted in a deposit that bifurcated upstream and downstream of the barrier.
Forced deceleration at the barrier resulted in thickened deposition on the slope. Frontal
confinement resulted in onlap and lateral spreading at the barrier, along with erosion of the
barrier and down-dip overspill that formed a deposit deeper in the basin. Acceleration
down the back of the barrier by this overspill resulted in the generation of a plunge-pool at
the foot of the barrier as the flow impacted the slope substrate. Observations from ancient
and modern turbidity current systems can be explained by our physical models, such as: the
deposition of thick sandstones upstream of topography, the deposition of thin sandstones
high on confining slopes, and the complex variety of potential stacking patterns produced

by confinement.
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7.2 Introduction

Turbidity currents are the primary mechanism by which sediment is transported
from shallow to deep water (e.g. Kuenen and Migliorini, 1950), where they build the largest
sediment accumulations on Earth (e.g. Curray and Moore, 1971; Ingersoll et al. 2003).
Turbidity currents are strongly affected by subaqueous topography (e.g. Ericson et al. 1952;
Gorsline and Emery, 1959; van Andel and Komar, 1969) that can be formed by a many
processes, such as: compressional folding (e.g. Lucente et al. 2004; Motley and Leong,
2008), extensional faulting (e.g Cullen et al. 2019), contourite drifts (e.g. Fonnesu et al.
2020), or salt diapirism (e.g. Doughty-Jones et al. 2017). Understanding the effects this
topography exerts on turbidity currents is crucial for the prediction of turbidity current
pathways and deposit character (e.g. Kneller and Buckee, 2000). This has implications for
reconstructing ancient sediment routing systems (e.g. Sinclair, 1994; Lomas and Joseph,
2004; Smith, 2004; Bell et al. 2018a; Dodd et al. 2019; Soutter et al. 2019), de-risking
subsurface infrastructure placement (e.g. Bruschi et al. 2006; Carter et al. 2014), predicting
hydrocarbon or CO2 reservoir quality (e.g. McCaffrey and Kaeller, 2001), and for
improved understanding of fluid mechanics (e.g. Mulder and Alexander, 2001; Meiburg and
Kneller, 2010).

The effect of confining topography orientation has been shown to be influential in
the stratigraphic record of turbidity currents, with both centimetre-scale sedimentary
structures and kilometre-scale depositional patterns differentially affected (e.g. Sinclair,
1994; Hansen et al. 2019). Lateral confinement, for example, has been used to explain lobe
thinning trends (Amy et al. 2004) and stacking patterns (Spychala et al. 2017), oblique
confinement has been suggested to cause deflection (Kneller et al, 1991; Haughton, 1994)
and acceleration (Jobe et al. 2017) of incoming flows, and frontal confinement has been
postulated as the reason for thick deep-marine sandstones deposited up-stream of the

confinement (e.g. Bersezio et al, 2005; Stevenson and Peakall, 2010).

Natural turbidity currents are notoriously difficult to observe, with only a few
studies collecting direct measurements of their behaviour (e.g. Talling et al. 2013; Clarke,
2016; Azpiroz-Zabala et al. 2017; Symons et al. 2017; Paull et al. 2018). The characteristics
of turbidity currents are therefore often inferred from scaled-down physical model
analogues (e.g. de Leeuw et al. 2016; Pohl et al. 2019ab) that permit systematical variation

of individual parameters and analysis of their effects. The effect of subaqueous topography
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on experimental turbidity currents has been studied previously (e.g. Edwards et al. 1994;
Alexander and Morris 1994; Kneller, 1995; Kneller and McCaffrey, 1995; Brunt et al. 2004;
Bursik and Woods, 2000; Al Ja’aidi et al. 2004; Amy et al. 2004; Kubo, 2004; Stevenson and
Peakall, 2010; Oshaghi et al. 2013; Abhari et al., 2018; Farizan et al., 2019). However,
almost all of these studies are performed either within narrow flumes, with non-erodable
substrate, or using homogenous or synthetic sediment. While these studies are very
insightful regarding interaction between turbidity currents and topography, they therefore
only representative patterns of erosion and deposition at their particular bounding

conditions.

Supercritical turbidity currents and their deposits are becoming increasingly
recognised as influential components of modern and ancient deep-water systems (e.g.
Postma and Cartigny, 2014). Deposition from supercritical flows can be driven by their
transition to a subcritical regime via a hydraulic jump (e.g. Komar, 1971). Hydraulic jumps
are most commonly associated with channelised flows (e.g. Hage et al. 2018), flows on
levees (Fildani et al. 2006), or flows at slope-breaks (e.g. Kostic and Parker, 2006; Covault
et al. 2017; Brooks et al. 2018). The prevalence and character of hydraulic jumps and their
associated deposits are less well understood in topographically-complex settings (e.g.

Edwards et al. 1994; Lamb et al. 2008; Maier et al. 2018; Howlett et al. 2019).

This study documents scaled physical models of turbidity currents interacting with
basin-floor topography and has three main aims: 1) to assess the effect of the incidence
angle onto topography (0°, 45°, and 90°) on turbidity currents and their deposits, 2) to
explore the effect of topography on flow criticality and associated depositional features;

and 3) to use these findings to aid in the stratigraphic interpretation of deep-water basins.
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this study. Arrow = flow direction.
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7.3 Methodology

Experimental Set-up and Data Collection

Experiments were carried out in the Eurotank flume tank at Utrecht University.
The flume tank configuration used is the similar to that of other studies (e.g. de Leeuw et
al. 2018; Ferguson et al. 2020; Pohl et al. 2019a; Spychala et al. 2019). It comprises a 3 m
long, 80 cm wide and 8 cm deep channel on a 11° dipping slope, a 4 m long and 4° dipping
slope without a channel, and a 4 m long horizontal basin floor (Fig. 7. 1A). The most
confining channel-form used by de Leeuw et al. (2018) was used in order to promote

bypass along the upper slope and deposition on the topographically-confined lower slope.

The first experiment was run without any basin-floor topography (i.e. unconfined).
A linear topographic ridge was created for three subsequent experiments with incidence
angles of 0, 45, and 90° relative to the dip-slope (lateral, oblique and frontal confinement
respectively (Fig. 7. 1B)). The ridge was a 12 = 2 cm high, ~40 cm wide triangular prism
with a confining surface that dipped at 25° £ 5° on both the upstream- and downstream-
facing sides (Fig. 7. 1A). The barrier height was scaled to approximately double the flow
thickness in order to fully confine the flow (Fig. 7. 1A). The barrier, channel, slope, and
basin floor were formed from fine-sand (Fig. 7. 1B). The use of an erodible substrate
allowed both erosion and deposition to be recorded by high-resolution laser scans (2 x 2
mm resolution) of the tank before and after each run (Fig. 7.1A). These difference maps
were used to describe the geometry of the deposit, to create cross- and dip-sections and to
quantify changes in deposit thickness laterally and longitudinally (thinning rates). Thinning
rates were calculated based on three thickness segments or ‘sub-environments™ 1) thickest
point of deposit to 5 cm (axis), 2) 5 cm to 2 cm (off- axis) and 3) 2 cm to 1 cm (fringe)
(Fig. 7. 1C). Longitudinal thinning rates (parallel to flow and deposit axis) could not be
calculated within the distal fringe due to ponding of water at the base of the drained tank,
which obscured the edge of the deposit (Fig. 7. 1C). The edges of deposits, and therefore
morphometric descriptions, are also measured based on the 20 mm pinch-out line due to

water ponding at the toe of the deposit after draining of the tank prior to laser-scanning,.
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Ultrasonic Doppler Velocity Profiler (UVP) probes were used to measure flow
velocity. Seven UVP probes were located on the slope and one was located in the channel
(Fig. 7.1A). Four UVPs were positioned through the axis of the tank and spaced ~80 cm
apart (UVP 1, 2, 3, 4), and four UVPs were positioned laterally across at ~20 cm spacing
(UVP 5, 6 7, 8), forming a “I” shaped probe distribution capable of capturing both
longitudinal and lateral cross-sections (Fig. 7.2; 7.4). In order to record the entirety of the
passing flow and maintain geometric consistency between the steeply dipping channel and
shallowly dipping slope the UVPs were orientated facing downward at a 60° angle relative
to the local bed. Consequently, the velocities measured reflect the velocity field from the
indicated UVP position to ~ 10 cm upstream on the slope and ~ 12 cm in the channel
(Fig. 7.2A). The velocity profiles were calculated from the UVP measurements under the
assumption that the mean flow is dominantly parallel to the bed (Cartigny et al., 2013) and
that bed-perpendicular velocity is negligible. It should be noted that the lateral
measurements were collected with the probes aligned straight up-slope, obliquely with
respect to the spreading oncoming flow, therefore the measured velocities from these
probes may be slightly underestimating the true flow speed. Normalised velocities (by

maximum channel velocity for axial velocities and UVP D for lateral velocities) are used to

A) Sediment Properties B) Unconfined Flow Properties
Parameter Gr?li]':)ize Parameter ((':Ssgnf)l (S‘I\zf Z)
Clay D, 7 Flow height (h) (m) 0.07 0.05
Plastic D,, 331 Flow density (p,) (kg/m’) 1290 ~1290

siltD,, 53 Maximum velocity (U,,) (ms™)  1.09 0.77
Sand D., 161 Shear velocity (U) (ms™) 0.07 0.05
Garnet D, 193 Densimetric Froude number (Fr,) 1.78 1.46
Mixed D,, 18 Reynolds number (Re) 76278 37348
Mixed D, 141 Particle Reynolds number (Re,) 9.65 6.88
Mixed D, 274 Shields number 3.09 1.57

Table 7.1: Experimental sediment (A) and flow properties (B).
compare velocities between each run in order to counter the effect of minor variations in

discharge that may be present between each run.

Flow Properties
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Each flow had a sediment concentration of 17 %, as this value allowed the flows to
meet the scaling criteria (next section). The sediment in each experiment consisted of a
mixture of materials (Fig. 1; Table 1A). The sediment composition, by weight-percent, was
65% sand (2.65 g/cm’), 17.5 % silt (2.65 g/cm’), 7.5 % kaolinite clay (2.65 g/cm?), 5 %
plastic (1.5 g/mm’) and 5 % garnet (3.9 g/mm”’) (Fig. 7.1A). This sediment mixture was
used to investigate in the effect of sediment density on deposit characters. Results relating
to these compositional effects will be discussed in a separate manuscript, here we will only
discuss the effect of the basin topography on depositional patters. The sediment
composition (variable densities) and grain-size is similar to that measured within natural
turbidity current deposits (e.g. Stanley, 1963; Bell et al. 2018b). Grain size distributions
were collected using a Malvern Mastersizer laser diffraction particle size analyser (Fig. 7.1A;
Table 7.1). The sediment-laden water was pumped at a discharge rate of 30 m’/s into the

flume tank and flowed down the channel and onto the slope as a turbidity current.
Scaling

Froude scaling: Froude scale modelling uses the dimensionless Froude and
Reynolds numbers to scale natural turbidity currents to experimental turbidity currents
(Peakall et al. 1996; Kneller and Buckee, 2000), with the Reynolds number relaxed
compared to natural systems and the Froude number held as similar (e.g. Graf, 1971). The
Reynolds number (Re) describes the ratio of inertial to viscous forces, where Re values

greater than 2000 represent a fully turbulent flow:

(1) Re = PcURmax

where gc = the density of the current, U = the average velocity below the flow height (h),
buee = flow height at the velocity maximum, and p = dynamic viscosity. Flow height is
calculated as the height of the flow at ”2 of the U,.. (Launder and Rodji, 1983; Pohl, 2020).
The viscosity of water was used assuming that the low-concentration of weakly cohesive
kaolinite clay had little effect on the flow viscosity (Baker et al. 2017). The experimental
flows used by this study have Reynolds numbers of 76,000 within the channel and 37,000
at the most distal axial probe on the slope (~200 cm), and are therefore fully turbulent

(Table 1) (e.g. Leeder, 1982).
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The Froude number (Fr) describes the ratio of inertial to gravitational forces acting
on a turbidity current, and for scaling purposes it should be held as comparable to natural
turbidity currents. Flows with Froude numbers greater than 1 are termed supercritical,
while flow with Froude numbers less than 1 are termed subcritical (e.g. Komar, 1971). The
transition from supercritical to subcritical flow is marked by a discontinuity known as a
hydraulic jump, and is manifested by thickening and deceleration of the flow through the
jump (e.g. Komar, 1971; Garcia and Parker, 1989). The ratio between Fr upstream of the
jump (Fr)) and Froude number downstream of the jump (Fr;) controls the strength of the
jump (velocity decrease and thickness increase), with low ratios resulting in weaker jumps
and high ratios resulting in stronger jumps (e.g. Cartigny et al. 2014). The densimetric
Froude number (Fr) further accounts for gravity acting on the density difference between
the flow and ambient fluid (i.e. the reduced gravity (), and is thus used for describing

turbidity currents (Kneller and Buckee, 2000):

_ _Umax
(2) Frd - (hg")1/2

where
®) g =g

where g = acceleration due to gravity and pa= the density of the ambient fluid. The
modelled turbidity currents (based on the unconfined control experiment) were
supercritical (Fr, = > 1) within the channel axis (F7; = 1.78) and on the mid-slope (Fr; =
1.46) (Table 1). These Fr, numbers are consistent with those estimated for natural turbidity
currents (cf. Sequerios, 2012), and thus scalable to natural systems. It should be noted that
Froude number calculations assume a constant flow density; however, it is likely that flow
density decreased and F7, increased distally as the flow became more dilute, making the Fr,

numbers a minimum estimation.

Shields scaling: Recent experimental studies (e.g. Fernandes et al. 2019; Pohl, 2019b;
Ferguson et al. 2020) have adopted the scaling approach of de Leeuw et al. (2016), which
emphasises the importance of scalable turbulence-sediment interactions. This approach

depends on the relationship between the Shield’s number (t*) (Shields, 1936), and the
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particle Reynolds numbers (Re,), which governs how sediment is transported (e.g. van Rijn,

1984; de Leeuw et al. 2016) (Table 7.1; Fig. 7.4):

U*?
H =
@ T (ps/pf —1)gDso
_ U*Dso
(5) Re, = -

where ps is the sediment density (1290 kg/m3), D50 is the median grain size (141
um), » is kinematic viscosity of fresh water at 20°C, and U* is the shear velocity (m s™) as

described by Middleton and Southard, 1984; van Rijn, 1993):

-1

6)  U* = Upaxrk [ln (h’"“’”/o.wgo)]

where k is von Karman’s constant (0.40), and D90 is the 90th percentile of grain
size (274 um). If the Shields number is too low, then the experimental current is below the
initiation of suspension and is therefore not representative of natural turbidity currents
(Fig. 7.4). Relaxation of the Re¢, compared to natural systems is permitted as long as the
boundary layer is rough, or transitionally rough, and thus dominated by turbulent, and not
viscous, forces (Fig. 7.2) (Garcia, 2008). The experimental turbidity currents in this study
plot above the initiation of suspension and developed a suspended sediment profile
throughout the flow (e.g. Bagnold, 1966; van Rijn, 1984) (Fig. 7.4). The currents also had a
transitionally rough boundary layer, which causes both turbulent and viscous forces to
interact with the bed and prevents the flow being overly depositional (de Leeuw, 2016), or
‘depletive’ (e.g. Kneller, 1995) This means that, when characterised with the Shields
parameter and the particle Reynolds number, these flows are in the same dynamic regime
as natural turbidity currents (Fig. 7.4). Both of these scaling criteria hold true for flows
within the channel, and flows at the point of topographic interaction on the slope (Fig.
7.4). The sediment mobility of these physical models therefore scales to natural turbidity

currents using the most current scaling approaches.
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Hierarchical scaling: The deposits generated by the individual experimental flows
have been suggested to represent lobe elements (sensu Prélat et al. 2009) by other studies
(Spychala et al. 2019; Ferguson et al. 2020). This is due to the way in which an individual
experimental deposit shows little to no compensation and instead aggrades vertically, while
multiple experimental deposits are heavily influenced by the relief of previous deposits and
stack compensationally (Spychala et al. 2019; Ferguson et al. 2020). This same pattern of
poortly-developed compensational stacking between successive event beds to the well-
developed compensational stacking between successive lobe elements (that build lobes) has
been observed in the subsurface (e.g. Deptuck et al. 2008) and at outcrop (e.g. Prélat et al.
2009), leading to the interpretation that the deposits formed in these models are most

representative of lobe elements.
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Figure 7.2: Shields-scaled experimental and field-measured flows. (modified from Fernandes et al.
2019). The flows produced by these excperiments are Shields-scaled within the channel (UV'P 1) ana
on the stope (UV'P 4) to promote both sediment entrainment and transport, mafking the experimental

flows similar to natural flows.
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7.4 Physical modelling results

Channel and channel-slope transition: All experiments

Observations: The input flow parameters and channel-form dimensions were
uniform across all runs so the following description applies to all flows. Flows were highly
erosional within a 15 cm zone around the mouth of the inlet pipe, becoming partly
depositional down the axis of the channel (Fig. 7.2). Channel deposits thin distally and
laterally, reaching maximum thicknesses of 5.1 cm ~7 cm away from the inlet pipe and
thinning to < 2 cm at the channel-mouth and channel-margin. Channel margins were
eroded asymmetrically, with erosion of up to 4 cm into the inside channel margin measured

(Fig. 7.2). Thin (< 1 cm) overbank deposits were observed across the runs.

Loss of channel confinement and reduction in slope angle at the channel-slope
transition was characterized by < 2 cm of deposition, or non-deposition, through the axis
for a distance of 1 m (Fig. 7.2). This axial zone initially thins at the mouth of the channel
toward a depositional minimum at ~20 — 60 cm down-dip, before thickening again ~160
cm down-dip of channel mouth. This results in an up to ~40 cm wide and ~90 — 130 cm
long oval-shaped area of bypass on the slope. This area of bypass was flanked by up to 3

cm of deposition that thickens down-dip from the margins of the channel.

Interpretation: Excessive erosion at the channel head is caused by the turbidity
current suspension exiting the inlet pipe and transitioning from un-erodible to erodible
substrate, and is therefore an experimental artefact. Deposition immediately down-dip of
this zone is driven by capacity-driven deposition (sensu Hiscott, 1994), with thicker
deposits in the channel axis than the channel margins due to higher sediment
concentrations within the axis. The channel was predominantly a bypass zone but the
deposit gradually aggraded due to the initial high concentration of the flows, eventually
filling by sedimentation of the slower and more depositional tail of the flow (e.g. Barton et
al. 2010). Lateral confinement of the flow caused erosion along the length of the channel
margins. This asymmetrical channel-margin erosion is attributed to either variation within
turbulent flows exiting the inlet pipe at slightly offset directions, or small irregularities in
the pre-formed channel topography. Deposition on the outsides of the channel-form

margins was driven by overspill of the upper parts of the turbidity current that were able to
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surmount the channel relief (e.g. de Leeuw et al. 2016; 2018), forming levees (e.g. Normark
et al. 1983; Kane & Hodgson, 2011).
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Flow relaxation, coupled with a relatively high slope angle, counteracted the effects
of flow expansion and deceleration at the channel mouth, developing the broad bypass
region (Pohl et al. 20192). Deposition occurred at the margins of this non-depositional
zone due to lower velocities at the margins of the flow (e.g. de Leeuw et al. 2016). The
marginal deposits acted to further confine the flow, enhancing bypass and creating a
constructional channel-form evident in strike cross-sections (Fig. 7.7A1) (e.g. Hamilton et

al. 2015; de Leeuw et al. 2016).

Channel-slope transition — basin floor

The following sections will describe deposition solely on the topographically-varied
portions of the slope and basin floor (> 1.5 m down-dip from the channel-slope break),
except within the laterally confined run, which is affected by topography from the mouth

of the channel to the basin floor.

Unconfined

Observations: The unconfined experiment produced a 12.8 cm wide and 46 cm
long deposit, with a length-width ratio (/W) of 3.6. The deposit thickened from 1 - 2 cm
to a maximum between 20 cm - 32 cm down-dip (Fig. 7.2A), with the thickest point of the
deposit (centroid) reaching 6.5 cm near the slope-floor break at 390 cm (Fig. 7. 2A). From
43 to 320 cm the deposit maintained a 5 - < 6 cm thickness, forming a 90 cm long and 60
cm wide axial zone. The deposit thinned to < 2 cm thick over 30 cm before the thickness
became obscured by ponded water on the flat basin floor (Fig. 7.5A). The deposit also
thinned laterally, reaching its maximum width of 128 cm, 240 cm down-dip of the channel

mouth (Fig. 7.7A; B; 8A; B).
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Acceleration through time and erosion is indicated by the UV'P data.
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Flow velocity decreased with distance away from the inlet pipe and through time
(Fig 4A). The maximum velocity of 1.09 m s” was recorded by the most proximal probe in
the channel. The velocity decreased down-dip to 0.77 m s” at the most distal axial probe
(UVP 4) over a distance of 240 cm. Velocity decay was more rapid laterally within the flow,
from 0.77 m s to 0.21 - 0.31 m s over 80 cm, away from the flow axis (UVPs 5 and 8).
Velocity decay laterally was not symmetrical. Velocity initially decayed slower toward the
left of the flow between the axis and first lateral probe (UVP 6), before decelerating more-
rapidly between the first and second left-lateral probe. Comparatively, the right-lateral
probe measurements showed more linear velocity decay from axis to margin (Fig. 7.3A;

Fig. 7.8C).

Interpretations: Distal thickening of the unconfined deposit is attributed to the
gradual waning of flow velocity as the flow expanded across the slope (Fig. 7.3A; 5A), with
velocities likely decreasing and deposition increasing throughout the run in this zone as the
deposit gradually aggrades and generates topography (Hamilton et al., 2015). The centroid
located near the slope to basin floor transition suggests that the reduction in slope angle at
this point enhanced deposition. Thinning of the deposit down-dip of the centroid is
attributed to waning and competency-driven deposition of the less dense components of
the flow (clay, silt and plastic) (Table 1) on the basin floor. Lateral thinning is attributed to
flow expansion, deceleration and deposition on the margins (e.g. de Leeuw et al. 2016). The
variation in lateral thinning rates is possibly due subtle lateral-dip variations on the

constructed slope.

Lateral Confinement

Observations: Lateral confinement parallel to the right-hand channel margin
resulted in a deposit 34 % narrower (58.5 cm) than the unconfined deposit and 10 %
longer (50.6 cm) (L/W = 6) (Fig. 7. 1B; 3B; 8D). Lateral thinning rates differed between
the confined and unconfined sides of the deposit; on the confined margin the deposit
thinned 74 % less from the centroid (5.6 cm) to 5 cm, 29 % less in the off-axis, and ~8x
more in the fringe when compared with the unconfined deposit (Fig. 7.8B). On the
unconfined margin the deposit thinned 8 — 17 % less initially, before thinning 72 % more
at the fringe (Fig. 7. 1C). Thinning rates were also reduced by 78 % down-dip of the

centroid (Fig. 7.2B; 8A). Up to 3 cm of erosion was seen along the barrier margin confining
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A) Mid-slope strike-sections
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the flow (Fig 7A). This erosion extends for ~440 cm down-dip from the channel-
mouth, adjacent to the main deposit.
The normalized axial velocity (UVP 4) of the laterally confined run was 20% faster (0.76
m/s) compared with the unconfined run (Fig. 7.3B). Lateral velocities wete also affected by
confinement, with the velocity profile measured by the UVP adjacent to the barrier having
an Umae ~50% higher than the equivalent point in the unconfined run. On the outside of
the topography (UVP 8) the velocity was 81 % slower than the unconfined run (Fig. 7.3B).
The velocity at the equivalent probe on the unconfined side of the laterally confined flow

was 10 % slower than the unconfined run.

Interpretations: Erosion of the lateral barrier was caused by confinement of the
flow and consequent shear stresses exerted on the barrier substrate (Cossu and Wells,
2012). Erosion decreased down-dip as the flow waned. Non-deposition on the right-hand
‘shielded’ side of the barrier was caused by this confinement, which prevented lateral
spreading of the flow and deposition on the right-hand side of the tank (Fig. 7.10). This is
supported by the reduced velocities measured on the right-hand side of the barrier (Fig.
7.3B). The velocity measurement collected adjacent to the barrier with a vertically higher
Umax is attributed to a more well-mixed, homogenous and slower upper part of the flow

that was able to run-up the topographic barrier (Al Ja’aidi, 2000; Al Ja’aidi et al. 2004).

Enhanced thinning rates in the fringe adjacent to the barrier are suggested to be
caused by the barrier (Fig. 7.8B), with the barrier slope causing flow deceleration, resulting
in faster rates of deposition in lateral positions (e.g. Barker et al. 2008), and consequent
onlap of the deposit against the barrier (Fig. 7.7A2, B2). Reduced thinning rates through
the axis and on the unconfined margin of the flow are also attributed to this confinement.
The axis of the flow was confined laterally between the barrier and marginal deposition,
thus allowing the maintenance of high velocities along its length and decreased rates of
deposition down-dip and laterally, resulting in an elongation of axial deposition. This
interpretation is slightly complicated by the 14% faster velocity decay measured from axis
to margin on the unconfined side of the flow compared with the unconfined run (Fig.
7.8C). This indicates that proximally (0 — 200 cm) the flow was focused axially through the
basin due to confinement by the barrier and marginal deposition, resulting in rapid velocity
drop-off laterally within the flow. The rate of marginal deposit aggradation will have

exceeded the rate of axial aggradation throughout the passage of the experiment, further
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confining the flow (e.g. de Leeuw et al. 2016), enhancing sediment bypass, and causing
elongation of axial deposition. At more distal positions (200 - 400 cm) this effect had been
reduced as the flow began to spread laterally over the slope. Amy et al (2004) reported
similar patterns based on outcrop and experimental observations, with enhanced bypass
adjacent to a laterally-confining barrier and enhanced deposition away from the barrier

during the passage of a high-velocity flow.
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Figure 7.8: Actnal (A, B, C) and normalised (D, E, F) thinning and velocities recorded by these
experiments. The deposits have been divided into their depositional components, i.e. in the oblique

experiment the upstream confined deposit is treated as a separate to the downstream unconfined deposit.

Oblique Confinement
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Observations: Oblique confinement of the flow resulted in a bifurcated deposit,
with one ‘axis’ of the deposit positioned upstream of the barrier, and the other ‘axis’
downstream of the barrier (Fig. 7.2C), resulting in two distinct centroids. The upstream
centroid was 20 % thicker than the downstream centroid (7 cm compared with 5.8 cm).
The upstream deposit was also more elongate (I/W 5.3) and extended over a longer
distance than the downstream deposit (/W 1.5), having a similar geometry to the laterally
confined deposit described previously (Fig. 7.2B; 8D). The upstream deposit was different,
however, in that it displayed an arcuate surface on its upstream side that dipped steeply
towards the channel, forming a wedge or ridge like geometry. (Fig. 7.2C; 6C). Thickening
across this surface was rapid, increasing down-dip from ~10 cm to ~70 cm over ~20 cm,
forming a ridge with a steeply dipping upstream face and a shallow downstream face. The
ridge caused a discontinuity within the axis of the upstream deposit, with the axis ~50%
narrower than would be expected if continuous along the barrier. Thinning from centroid
to 5 cm thick down-axis within this upstream deposit was 78 % less, and 62 % less in the
off-axis, when compared with the unconfined deposit (Fig. 7.8A). Thinning rates on the
confined margin of the upstream oblique deposit were also much greater than those
measured within the laterally confined deposit; the oblique deposit thinned 451 % greater
within the axis, 257 % greater with the off-axis, and 100 % greater within the fringe (Fig.
7.8B).

Morphometrics of Experimental Deposits
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Figure 7.9: A) L/ W ratios from experimental deposit. Lateral confinement results in the highest L/ W
ratios, while up-dip confinement results in the lowest /W ratios. B) Width-thickness ratios for each

experimental deposit. Laterally confined deposits have the greatest thickness-width ratios.
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Up to 7.8 cm of erosion was recorded down the axis, removing a substantial
amount of material from the topographic barrier (Fig. 7.2C; 5C). Erosion decreased
laterally and was confined to an erosional zone approximately the same width as the
channel (~ 8 cm). Deposition initially thinned across the barrier, before thickening again
down-dip, forming the same downstream depositional geometry as seen in the unconfined
experiment, but with a thinner centroid (5.6 cm). Thinning rates were slower within this
downstream deposit compared to the unconfined deposit, with down-dip thinning rates 47
% slower in the axis, and 43 % slower in the off-axis. Marginal thinning rates were also
slower, with thinning rates 63 % slower in the axis, and 35 % slower from in the off-axis.

This resulted in 2 more equant, and less lobate, deposit down dip (/W 1.5).
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Figure 7.10: Overlayed deposit extent maps showing the similarity between each deposit
The pinch-out line is at 2 cm due to the difficulty in tracing accurately around the 2 cm line

becanse of water-ponding in the drained tank.

The measured velocity field of this flow was similar to that of the unconfined run
due to most of the UVP probes being located upstream of topography (Fig. 7.2C). The
only anomalous upstream velocity measurement was collected by the UVP closest to the
topography (UVP 4), which was located within the axis of the flow 20 cm upstream of the
topography. When normalized the velocities at this axial position were 36 % higher than
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the same relative position within the unconfined run and 20 % higher than the laterally
confined run (Fig. 7.8C). This velocity anomaly was present throughout the experiment and
was maintained even when more proximal velocities began to wane. Velocities from the
‘shielded” UVP 8 on the downstream side of the topography were also affected, being 74 %
slower than the equivalent position on the unconfined experiment and 2.5x higher Umax

(Fig. 7.2C). Velocities were not able to be analyzed from UVP 7 due to incomplete data

collection.
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Figure 7.11: Flow pathways and criticality for each of the runs. Criticality is based on UV'P

measurements. Criticality down-dip of UV Ps is inferred based on sedimentary structures.

Interpretations: The increased thickness of the upstream bifurcated deposit

indicates that it formed immediately upon turbidity current interaction with the barrier and
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that left-lateral deflection was the primary route taken by the incoming flow throughout the
experiment. The downstream deposit may have formed concurrently with the upstream
deposit, with the deposit representing the lower concentration upper regions of the flow
that were able to surmount the topographic relief (e.g. Sinclair and Tomasso, 2002) (Fig. 7.
13). This may explain the equant shape of the deposit, which is a characteristic of
deposition from lower-concentration flows (Al-Ja’aidi et al. 2004). Alternatively, the
downstream deposit formed after the upstream deposit as erosion of the barrier decreased
the degree of confinement, allowing the flow to overtop it. A combination of both of these
processes is likely to have contributed to the deposition of the downstream deposit. The
similarity in geometry between the unconfined deposit and this downstream deposit is as

expected due to their relative lack of confinement.

The higher flow-velocities upstream of the barrier are suggested to be caused by the
axis of the flow impacting with the barrier. Flow convergence and acceleration down the
barrier will have enhanced this erosion, with deposition extending obliquely down-dip
along the barrier (Fig. 7.10C). Flow convergence is attributed to similar features seen at
oblique onlap surfaces in field investigations (see ‘accumulative flow’ of Kneller and
McCaffrey, 1999). It is also possible that flow reflection may have interfered with the
velocity measurement; however this should have resulted in deceleration, and not
acceleration, so is not deemed to be significant. Erosion of the barrier may have been
enhanced by flow convergence as the flow became increasingly laterally confined by the
margins of the barrier incision (Gee et al. 2001). Erosion may also have been enhanced
through time as the deposit aggraded decreasing the relative height of the barrier. The low-
velocities and higher U, measured on the UVP 8 downstream of the barrier are
interpreted to have been caused by shielding of this UVP by the barrier, with only the well-
mixed and lower velocity upper parts of the flow able to surmount the topography and be
detected by the UVP. This is an analogous process as interpreted to have occurred at UVPs
7 and 8 over the crest of the barrier and on the shielded side of the tank. The velocity
measured in the oblique run is slightly higher (0.08 m s' compared with 0.06 m s*),

possibly due acceleration of the flow down the backside of the oblique topographic barrier.

The steep-sided ridge deposited adjacent to the barrier and to the left (looking
downstream) of the flow axis is suggested to be formed through rapid flow deceleration

and thickening upon interaction with the barrier (e.g. Rottman et al. 1984). Similar
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geometries have been formed within both topographically-affected experimental and
numerical turbidity currents and has been attributed to the flow thickening and decelerating
at the barrier and forming a hydraulic jump or reflective bore (Edwards et al. 1994; Kneller
and Buckee, 2000; Lamb et al. 2004; Howlett et al. 2018), resulting in the deposition of a
thick ‘sediment ridge” at the barrier (Alexander and Morris, 1994). Similar sttrctures were
also produced in granular pyroclastic flows through the formation of a ‘granular jump’
(Smith et al. 2000). Flow ‘lofting’ has also been described within subcritical flows
encountering frontal barriers (Stevenson and Peakall, 2010). While there are no UVP
measurements in the correct position to record a jump, it can be inferred based on the
supercriticality of the incoming flow, the geometry of the ridge and its similarity to other
examples where Fr numbers were more constrained (e.g. Hamilton et al. 2015; 2017) The
aggrading sediment ridge, along with increased flux from deflected flow upstream
(Alexander and Morris, 1994), will have caused the jump front and associated deposition to
migrate and back-step through time (Fig. 7.10C). The formation of the ridge laterally within
the flow, and not within the axis, is attributed to lateral flow velocities and being
sufficiently low to allow hydraulic jump formation upon deceleration at the barrier. The
axial velocities were high enough to maintain supercritical conditions upon deceleration at
the barrier, therefore deposition was concentrated downstream of the barrier, forming an

essentially unconfined deposit (Fig. 7.10C; 11).

Frontal Confinement

Observations: Frontal confinement resulted in onlap and perpendicular spreading
of the deposit against the barrier (Fig. 7.2D). Spreading was greater on the left-hand side of
the flow axis. Deposition was not significantly thicker upstream of the barrier, and
compared with the unconfined deposit, the perpendicular geometry of the deposition on
the left hand-side was the only variation. The ridge seen at the up-dip extent of the
deflected deposit within the obliquely confined run was also observed at the up-dip reaches
of the deflected deposits within this run, albeit at a smaller scale (Fig. 7.6) The same
thickening pattern was observed, although the deposit only thickens to ~ 4 cm compared

to 7 cm in the obliquely confined run.

Erosion of the middle of the barrier was again observed, although not as deep as
the erosion in the obliquely confining run (Fig 3D; 5). Erosion (up to 2.5 cm) was also

focused on the upstream side of the barrier and failed to fully breach the barrier, while
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erosion was more focused on the downstream side of the oblique barrier, breaching it with
up to 7.8 cm of erosion (Fig. 7.2C; D). Erosion was also observed at the downstream foot
of the barrier (Fig. 7.2D), forming a 2.5 cm deep scour into the slope substrate that
shallowed down-dip over 40 cm before the flow became depositional (Fig. 7.7A4). This
down-dip deposition had a similar depositional pattern to the unconfined run, with
thickening and thinning occurring at broadly the same points on the slope. However, the
frontally confined deposit had more linear frontal and lateral margins (/W = 3) than the
unconfined deposit (I./W = 3.6), which was more lobate and had more cutvilinear margins
(Fig. 7.9). The frontally-confined deposit thinned from its centroid (6.2 cm) to 5 cm down-
dip, 18 % less than the unconfined deposit (Fig. 7.8A). Marginal thinning rates were similar

to the unconfined deposit (Fig. 7.8B).
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implications

Figure 7.12: A) Photograph of frontally-confined deposit. B) Interpreted photograph

of the flow processes occurring during the initial experiment. The ridge-like deposits
on the upstream margin of the deposit are suggested to be formed by hydraulic jumps
within the lower-velocity margin of the flow. The flow margins had lower-velocities
than the axis, so were able to decelerate below unity upon encountering the barrier,

while the axis was able to stay about unity due to its higher velocity.

Velocities up-dip of the topography were similar to those observed in the
unconfined control run (Fig. 7.3D). The axial velocity measurement (UVP 4) when
averaged between 10 and 40s is similar to those seen in the unconfined run. The velocity at
UVP 4 was not constant, however, and accelerated throughout the run, reaching a

normalized velocity 36 % higher than the unconfined run by ~ 55s (Fig. 7.3E). Lateral
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UVPs show the opposite pattern, however, with the flow initially up to 16 % faster than

the unconfined run, before decelerating through the run and becoming up to 33 % slower.

Interpretations: The downstream velocity increase toward the end of this
experiment indicates that more of the flow was able to surmount the topography and
deposit down-dip through time (Fig. 7.3E), compared to the obliquely-confined
experiment. This suggests that the upstream deflected ‘wing’” was deposited initially as the
flow decelerated at the barrier. Similar spreading at frontally confining barriers has been
reproduced in numerically-modelled turbidity currents (Howlett et al. 2019). Aggradation
upstream of the barrier gradually reduced the degree of confinement, allowing bypass and
deposition downdip, i.e. ‘fill-and-spill’ deposition (e.g. Sinclair and Tomasso, 2002). This
loss of relative frontal confinement was enhanced by axial erosion of the barrier, which also
has been observed in subsurface fold-thrust belts (Motley and Leeong, 2008). The axial
deposition that allowed the topography to be surmounted is interpreted to have been
subsequently eroded, leaving the upstream right-hand margin ‘wing’” (Fig. 7.2D) and left-
hand margin onlap (Fig. 7.13) as the erosional remnants of this early deposition (Fig. 7.2D).
The opposite pattern observed by the lateral probes (deceleration through time) is
suggested to be caused by the upstream deposition preventing overspill in lateral position
through time, thus limiting the flow’s ability to reach the lateral probes downstream
through time. Alternatively, the velocity decrease is due to increasing confinement axially
within the downstream scour, which allowed only the upper and lower-velocity parts of the

flow to reach the lateral UVDPs.

The ridge present on the upstream right-hand side of the deposit are suggested to
be formed in the same way as those formed in the same relative position on the obliquely
confined deposit, with the flow decelerating and thickening at the barrier and subsequently
undergoing a localized hydraulic jump on the slope (Fig. 7.10) (e.g. Alexander and Mortis,
1994). The axial erosion seen on the slope at the downstream base of the topographic
barrier is attributed to either deceleration at the foot of the slope, hydraulic jump formation
and scouring (e.g. Sumner et al. 2013) or excavation by flows that accelerated down the
backside of the barrier and impacted the slope (e.g. Lee et al. 2002). Erosion may have
been enhanced by entrainment of the early onlapping garnet, which increased the flow
density and velocity (Fig. 7.13). As more of the flow was able to surmount and flow down

the barrier the velocity gradually increased, which would have deepened the scour, and may
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have gradually prevented deposition downstream through entrenchment (Fig. 7.3E; 10).
Deposition dowstream of this scour, possibly analogous to deposition on the stoss-side of
a cyclic step (e.g. Postma et al. 2014), resulted in an unconfined lobate deposit at the slope
to slope-basin floor transition. If a jump was absent at the foot of the slope then it is likely
that the flow re-accelerated and deposited in the same manner as in the unconfined

experiment.

It is also possible that the barrier acted essentially as a defect on the bed, with the
incoming flow attempting to equilibrate the slope. This process would be analogous to a
waxing flow that has formed bedforms (i.e. the batrier) that were stable at a low velocity,
but which are now unstable at higher velocities and are therefore re-worked by the flow
(e.g. Cartigny et al. 2014). The scour at the foot of the barrier in this case may therefore be
formed by streamline separation and erosion at the foot of the lee-slope, much in the same

way erosion occurs at the foot of a lee-slope during ripple formation (e.g. Allen, 1969).

Summary and comparison of results

Morphometrics: The laterally confined deposits have the highest length-width
(L/W) ratios (5.3 — 6) (Fig. 7.9A). The lowest L/W ratios are seen in the deposits
downstream of slope confinement (1.5 — 3). Complete unconfinement produces the
median L/W ratio (3.6) (Fig. 7.2A). These differences in L./W ratios between confined and
unconfined deposits are consistent with those seen in natural systems (Prélat et al. 2010),
with the unconfined deposit having the same L/W as the average of unconfined lobes on
the Amazon Fan, for example (Fig. 7.9A). The experimentally confined deposits when
taken in isolation, however, have much higher L./W ratios than the average for natural
generically-confined systems (5.3 — 6 and 1.7 — 2 respectively), further indicating that lateral
confinement in particular causes extension and/or narrowing of deposits. Ratios of width-
to-thickness show similar trends, with unconfined deposits tending to be more laterally
extensive but thinner, and confined deposits tending to be less laterally extensive but

thicker (Fig. 7.9B).

Thinning rates: Across the experiments the unconfined deposits show lateral
thinning rates that are higher than longitudinal thinning rates, giving all of the deposits a
lobate shape elongate in the dip or flow-parallel direction (Fig. 7.8B). The unconfined

deposit shows the greatest longitudinal thinning rate, with laterally confined deposits
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having the lowest rates (Fig. 7.8A, D). The opposite relationship describes the outer
margins of the deposits, with thinning rates enhanced at the fringe when confined (Fig. 7.
8B; E). It should be noted, however, that in the axis and off-axis lateral thinning rates are
lower when confined than when unconfined, and that elevated thinning rates associated

with confinement are only seen in the fringe (Fig. 7.8B, E).

Velocities: Normalised axial velocities (UVP 4) are lowest in the purely unconfined
experiment (0.64 m s™), and greatest during the obliquely confined experiment (0.86 m s™),
with confinement (at any orientation) always causing an acceleration of axial velocities (Fig.
7.8F). The lowest velocities measured (0.06 — 0.08 m s™) were in the furthest lateral
positions on the shielded sides of the parallel and oblique topography (Fig. 7.8C). Lateral
velocities (UVP 4 to 6/7) decayed fastest from the axis during frontal and oblique
confinement and decayed slowest from the axis on the confined margin of the laterally
confined experiment (Fig. 7.8F). Lateral confinement had the fastest velocity decay from
the axis on the unconfined margin, however. Lateral confinement also showed the greatest
velocity decay on the furthest lateral margins (UVP 7 to 8) within the ‘shadow’ zone on the

backside of the barrier.
7.5 Discussion
Topographically-forced hydraulic jumps

Two styles of topographically-forced transition between supercritical and subcritical
flow and consequent hydraulic jump may be inferred from the depositional products of
these experiments. One jump style is formed upstream of topography and the other is

formed downstream of topography (Fig. 7.12; 13).
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Upstream jumps are forced by sudden flow deceleration and thickening upstream
of confining topography (Fig. 7.10C, D; 11; 12) (e.g. Alexander and Morris, 1994; Howlett
et al. 2019), forming a thick ridge of sediment upstream of the barrier (Fig. 7.6C).
Experimental granular pyroclastic density currents exhibit the same depositional pattern,
depositing increasingly steep backsets until the topography of the backset is such that a
‘granular jump’ forms, forming an upstream-thickened deposit that is remarkably similar to

that produced by this study (Smith et al. 2019). This ‘granular jump’ occurs in the absence
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Figure 7.13: Schematic diagram showing the likely stacking pattern and outcrop representation induced by
different styles of hydranlic jump seen across the runs. Facies downstream of jumps modified from Postma
and Cartigny (2014). A) Back-stepping of lobes cansed by the depositional relief of the underling deposit.
B, C) Major back-stepping cansed by an upstream hydranlic jump (B) or downstream (C) hydranlic junps
and erosion. These jumps form due to rapid deceleration at counter-siopes. The second deposit (1) in A, B
and C' is hypothetical. D) Logged section from the Annot Basin, SE France showing the potential fiela
expression of bydranlic jump proximal deposition passing into hydranlic distal lobe deposition.
of topography, indicating that this style of jump may arise should flow be sustained for
long enough to allow backsets to sufficiently steepen and decrease F7; of the incoming flow
below unity. This was demonstrated within turbidity currents by Hamilton et al. (2017),
who showed that as unconfined supercritical deposits aggrade their topography, eventually

this forces deceleration and hydraulic jump formation within the incoming flow, resulting
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in backset development and eventually avulsion. Pohl et al. (2019b) also experimentally
demonstrated that such a jump was generated if the depositional topography become high
enough to create an adverse slope (with an up-flow dip). These experiments show that this

effect can be enhanced by the presence of pre-existing slope topography.

This hydraulic jump generation and migration process may be recorded
stratigraphically as thick sandstones overlain by more ‘typical’ heterolithic lobe deposits
(e.g. Prélat et al. 2009; Kane et al. 2017; Fig. 13B; D) where ancient incoming flows
encountered topography, thickened and decelerated, and the overlying thinner-sandstones
representing the down-dip expression of younger thick sandstones deposited upstream as
the jump migrated landwards (Fig. 13B, C). Backsets may be present within the thick
sandstone, indicating upstream aggradation. Such a stratigraphic relationship is seen at
outcrop in the deep-marine Gres d’Annot of the bathymetrically-complex Cenozoic Alpine
foreland basin (see Joseph and Lomas, 2004 for review), and may be attributed to oblique
confinement and rapid deposition. There, thick amalgamated sandstones that appear to
have aggraded rapidly adjacent to fault topography are overlain by heterolithic sandstones
and mudstones that appear to be less confined and stack compensationally (Fig. 13D).
Evidence for flow reflection, such as opposing paleocurrent values (e.g. Kneller et al.
1991), may also form upstream of the confining barrier should the reflected bore
tractionally-rework the aggraded sediment (e.g. Edwards et al. 1994). Opposing
paleocurrents are present at the base of the outcrop example presented in Fig. 13D, as

predicted by Edwards et al. (1994).

Downstream jumps are formed downstream of topography when either: 1)
supercritical flows descend and rapidly decelerate at the foot of an intra-basinal slope or 2)
subcritical flows descend, accelerate and become supercritical down the slope, before
decelerating at the foot of the slope and passing through a hydraulic jump (Fig. 7.11; 13C).
Scouring of the slope (Fig. 7.13C) may occur in response to the development of strong
vertical velocities within the hydraulic jump (Sumner et al. 2013), or, in the absence of a
jump, as the flow impacts the slope and erodes the substrate, much like plunge-pools seen
at the foot of slopes in seafloor bathymetry data (‘impact pool” of Lee et al. 2002; Schnyder
et al. 2018). Deposition downstream of the jump in nature may form a thick sequence of
amalgamated sandstones that may correlate with more organised lobe deposits further

down-dip (Amy et al. 2007; Lee et al, 2004) (Fig. 7.13C). Downstream hydraulic jumps may
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be important in settings with steep intra-basinal slopes, such as fold-thrust belts (e.g. Amy
et al. 2007; Vinnels et al. 2010), salt provinces (e.g Prather et al. 1998) or active margins
(e.g. Harris and Whiteway, 2011). Due to the relatively high slope angle in these
experiments it is possible that the flow accelerated and became supercritical once again
downstream of the jump, or did not undergo a hydraulic jump and instead excavated the
slope (Lee et al. 2002) and re-accelerated, before expanding across the slope and

decelerating (Fig. 7.11D). The presence of steep slopes and topography may therefore

allow the formation of multiple types of hydraulic jump upstream and downstream of
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Figure 7.14: A) Uninterpreted and B) interpreted cross-section photographs from the upstream side of the
frontally confining run. This section is taken ~20 cn off-axis. The image shows onlap of a red garnet-rich
layer and layer onlap of a more sand-silt dominated layer. A schematic concentration-velocity profile is also
indicated on B) based on the relative densities of the sediment that comprises the flow and from measurea
concentration profiles within supercritical flows (Sequerios, 2012) C) Uninterpreted and D) interpreted field
excpression of the onlap geometries seen on A and B from the Eocene- Oligocene Annot Basin, SE Frnace.
The red shading highlights the wedged onlapping flows.

topography, and associated depositional heterogeneities.

Run-up of confined turbidity currents

Run-up, or ‘superelevation’, of turbidity currents and consequent deposition of
turbidites high on counter-slopes has been noted in geophysical (e.g. Muck and
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Underwood, 1990; Lamb et al. 2008), theoretical (e.g. Dorrell et al. 2018) and field (e.g.
Soutter et al. 2019) investigations. Run-up has also been recognised in these experiments
(Fig. 7.6C; 7TA2, 3, 4; 7B2, 3, 4), with the dense and higher-concentration garnet-rich axis of
the flow less able to run up the topography than the less dense sand-silt on the flow

fringes, forming an onlapping red wedge against the barrier (Fig. 7.14A).

An example of this stratigraphic relationship can be seen in the Grés d’Annot
turbidites of SE France, where distal low-density turbidites form a thin-bedded drape that
healed the original tectonically-formed basin margin onlap surface (Soutter et al. 2019).
This drape was subsequently onlapped by later turbidites, and is thus termed an intra-
formational onlap surface (Fig. 7.15B). In the experiments of this study, the downstream
deposit adjacent to the oblique barrier was thickest 90 cm away from the ridge, which it
thinned towards (Fig. 7.7B). The lateral fringe of the deposit thinned and onlapped the
slope of the topography, creating a relative low between the deposit centroid and the
deposit onlapping the topography (Fig. 7.15A). A hypothetical subsequent turbidity current
(tz) would fill this relative bathymetric low, and onlap directly against the slope drape of the
early deposit, and not the topographic barrier (Fig. 7.15A). These experiments provide
evidence for this stacking pattern being a common feature of confined basins, and provide
a mechanism for explaining abrupt coarsening-upward trends adjacent to basin margins

(Fig. 7. 15B).
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Figure 7.15: A) Schematic diagram showing the predicted deposition if another current (t;) was able tc
deposit over the obliguely confined t1, and the sedimentary log representation of that geometry. Allogenic
onlap surfaces are generated by basinal tectonics, while autogenic onlap surfaces are generated by the
depositional system, e.g. run-up of a low-density fringe. B) A field example from the Cenozoic Annot
Basin (SE France) showing an onlap geometry that may have been formed in the same manner as A.
Question marks indicate uncertainty in thin-bed correlation. C) Seismic example from a Paleocene deep-
marine system of the North Sea. Sedimentary lobe deposits are interpreted to onlap topography created by
a salt-diapir. More continnous reflections, which may represent thin-bedded turbidites, are offlaped ana
onlapped by subsequent reflections, which may represent the deposits of higher-density flows. Downwara
increase in acoustic impedance represented by a trongh (blue reflection).
Seismic data from the Paleocene deep-marine system of the North Sea (see Mudge,
2015 for review) shows that this stacking pattern may be resolvable on relatively deep
geophysical datasets (~25 m resolution), with reflections that appear to drape topography
onlapped by subsequent reflections (Fig. 7.15C). This may represent lower-density
turbidites forming a slope drape, with higher-density turbidites pinching-out against the
drape. It should be noted that such a pattern could also be interpreted as being formed
through subsidence or sediment supply variations (Sylvester et al. 2015) and the example in

Fig. 7.15C is purely for visualisation purposes.
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Implications for the interpretation of variably confined deep-water systems

These experiments highlight the morphological variation possible simply by
changing the orientation of confining basin topography. This is synthesized on Figure 16,
where a hypothetical active margin receives two consecutive periods of sustained sediment
delivery (t; and t). Assuming no external or allogenic signature is recorded in the deposits,
lobe elements in unconfined settings are expected to avulse and back-step (Hamilton et al.
2015, 2017; Ferguson et al. 2020) as each successive flow is influenced by depositional
relief created by previous flows (Fig. 7.13A). This process is enhanced where flows are
frontally or obliquely confined, as successive flows have to surmount both the barrier and
the underlying thick sandstones (t1) that were deposited by previous flows at the barrier,
thus trapping coarse-grains on the slope (Fig. 7.14) (Brunt et al. 2004) and causing a
topographically-forced back-step (Fig. 7.16) that could be mis-interpreted as an external

signal, such as decreasing sediment supply or sea-level rise.

Topographic orientation also affects the spatial distribution of individual flows.
This is best seen where an individual flow is obliquely confined, resulting in two separate
axial zones from one sediment input into the basin (Fig. 7.2D; 15). These disparate areas of
positive relief will act to complicate compensational stacking patterns and therefore the
correlation of units that are spatially distinct but time-equivalent. Bifurcation of deposits
will also affect paleocurrent measurements, with two separate populations of paleocurrents
in spatially separate areas (e.g. two separate exposures) representing deflection of turbidity
currents and not a migrating sediment input point (Fig. 7.16). Lateral and oblique
confinement may also affect lobe morphologies by preventing lateral expansion of turbidity
currents and enhancing their ability to transport sediment basinward. This would cause a
topographically-forced progradation that again could be mis-interpreted as an external

signal, such as an increasing sediment supply or sea-level fall.

214



Chapter 7:The effect of variable topography on turbidity currents: physical models and geological

implications

Active Margin ,,
h/

cha"nel

at bffOsi?,,
0
top()gra;'_')gpe

d
Flo,
W f,
N (o] .
e s
edb r
't

[y

Figure 7.16: Summary schematic diagram showing the depositional features and stacking patterns that can be
expected within steep and active margins based on these experiments. Initial deposition (t1) is based on the

experiments, while 12 is hypothetical. Initial deposition (t;) indicated by white fill on 1.

Implications for resolving external signals

Recent subsurface investigations have highlighted the role transfer-zone
topography may play in the manifestation of external signals in deep-water settings, and the
implications of this for source-to-sink studies (Prather et al. 2017). 'This study further
highlights the role of slope topography in the propagation of external signals. Deep-water

systems characterised by flows moving parallel to basin structure will be expected to
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maintain deposition farther into the basin than flows moving perpendicular to basin
structure (Fig. 7.16; 17). This will result in more source-representative signals in sinks
down-dip from transfer zones dominated by lateral confinement, such as axially sourced
foreland basins (e.g. Salles, 2014), and more attenuated and delayed signals in sinks down-
dip from transfer zones dominated by frontal confinement, such as fold-thrust belts (e.g.
Vinnels et al. 2010) (Fig. 7.17). Frontal confinement may also effect signal detection by
trapping signals on the slope (Fig. 7.17). These older signals (e.g. provenance
mineralogy/isotopic signatures) may then be eroded and incorporated within later sediment
pulses giving a false representation of the relative signal strength and age. Flows
unconfined by basin margins may be the mid-case source-to-sink scenario, with part of the
signal diluted through radial spreading of the flows and part of the signal delayed through

flow deceleration (Fig. 7.17).
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Figure 7.17: Rates of signal propagation and attennation across bathymetrically-complex deep-marine

margins (modified from Romans et al. 2016).

7.6 Conclusions

Physical models of turbidity currents interacting with topographic barriers at
incidence angles of 0°, 45° and 90° have been created in order to better understand the
effect topography has on natural turbidity currents and their deposits. Unconfined turbidity
currents are able to spread radially over the slope, forming a lobate deposit that thickens,
then thins distally. Laterally confined turbidity currents are prevented from spreading on
one side, forming an asymmetric deposit. Down-dip thinning rates are also reduced in a
laterally confined setting, allowing flows to deposit farther into the basin. Oblique

confinement resulted in an upstream deflected deposit and a downstream deposit, which
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has implications for deposit correlation in deep-water subsurface and outcrop datasets.
Frontal confinement caused lateral spreading, with inferred trapping of coarse grains higher

on the slope, compared to unconfined deposits.

Two styles of topographically-forced hydraulic jump are inferred from these
experiments. Upstream jumps are formed when flows rapidly decelerate upstream of slope
topography, resulting in the deposition of thick sandstones up-dip of topography.
Downstream jumps are formed downstream of topography and are caused by rapid
deceleration of flows at the foot of the barrier, with slope erosion occurring at the foot of
the barrier as the flow impacts the slope. The prevalence of these jump styles will be
greater in deep-water environments capable of producing local and steep slopes e.g. fold
and thrust belts and salt-influenced basins. The wide variation of depositional patterns
produced by changing confinement highlights the need to appreciate the structural
orientation of the confining margin with respect to sediment input, which will affect the
prediction of sediment distribution and character adjacent to topography, the interpretation
of stacking patterns in topographically-complex basins, and the propagation of external

signals through deep-water transfer-zones.
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CHAPTER 8:Synthesis
This chapter aims to address the research questions that were posed in Chapter 2
within the context of the results presented in Chapters 3 — 7. Future research questions and

directions generated by this study ate also proposed.

8.1 What is the stratigraphic evolution of onlap in a confined deep-water basin?

Different styles of pinchout and onlap have been described in exhumed and
subsurface confined deep-water basins (e.g. Bakke et al. 2013). The generic models for
onlap produced by these studies are often dualistic, with only two end-member styles
described and little discussion of the stratigraphic evolution of onlap through the fill of a
confined basin (e.g. Smith and Joseph, 2004). Numerical modelling has shown that the
stratigraphic evolution of onlap can be used to infer the sediment supply and subsidence
history of a confined basin (Sylvester et al. 2015), however internal factors, such as
longitudinal flow evolution, are not incorporated into the model. Chapter 3 used the well-
exposed onlap surfaces from the Annot Basin to show that internal factors have a major

effect on onlap patterns, and that this effect is stratigraphically predictable.

External and internal controls on deep-water onlap

The results of Chapter 3 suggest that the stratigraphic evolution of flow-type and
resultant deposit identified in confined lobes of Gres d’Annot records the progradation of
a siliciclastic deep-water system, with the Annot Basin fill transitioning from predominantly
distal lobe deposition, characterised by low-density turbidite deposition, to proximal lobe
deposition, characterised by high-density turbidite deposition, through time. This
progradation is suggested to have been driven by the external forces of sea-level and
tectonism (Callec, 2004; Euzen et al. 2004; Puigdefabregas et al. 2004), and is characterised
in the Annot Basin by a coarsening-upward sequence of stacked lobes that each display
similar vertical facies transitions as unconfined exhumed lobes (e.g. Hodgson et al, 2009).
These vertical facies transitions record the building of lobes, and are interpreted to
represent different lobe sub-environments. These sub-environments are broadly
differentiated by a prevalence of flows of increasing concentrations as flows longitudinally
evolve from proximal to distal parts of the basin. Internal topographic interaction and
pinchout of each of these sub-environments against the Annot Basin margin forms a
concentration-controlled onlap pattern that is stratigraphically predictable. A simple
numerical model shows that the observations made in this study can be reproduced, with

the low concentration flows able to run-up and deposit high on basin margins, and higher-
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density flows less able to run-up the basin margin. Chapter 3 therefore proposed a

numerical and field-supported stratigraphic evolution of onlap.

A predictable stratigraphic evolution of onlap

Initial siliciclastic deep-water deposition within a confined basin is represented by
low-density turbidites of the distal lobe fringe, which run-up and drape the confining slope
due to the low-concentration of their parent flows. Hybrid beds deposited by higher-
concentration flows of the proximal lobe fringe will overly these deposits. These flows are
less able to run-up topography due to their higher concentration, which will be will be
recorded by abrupt onlap against the underlying lobe fringe that draped the slope, forming
an intra-formational onlap surface that marks the transition between lobe sub-
environments. Medium-density turbidites deposited by lower-concentration flows in the
lobe off-axis overly hybrid beds of the proximal fringe, which will be recorded at onlap by
flows more able to drape topography than the underlying deposits. High-density turbidites
of the lobe axis represent the final stages of deposition which is manifested by their abrupt
onlap against the basin margin, or intra-formational onlap against underlying low-density

turbidites deposited high on the slope.

Onlap pattern interpretation

This stratigraphic evolution of onlap produces an autogenic onlap pattern
characterised by landward and basinward shifts in onlap termination. This mimics onlap
patterns formed through changing external controls on deep-water deposition (Sylvester et
al. 2015), highlighting the complexity of using onlap patterns alone to reconstruct the
history of confined basins. The scale of observation is also shown be important within this
onlap model as internal processes will be more influential at smaller temporal scales than
external processes, which may result in the onlap pattern described in Chapter 2 being
below seismic-resolution or adding internal noise to externally-derived onlap patterns.
Similar findings have recently been made by Sweet et al. (2019), who found that allogenic
processes in the Quaternary Golo fan controlled system-scale lobe morphologies, while

autogenic processes controlled internal lobe geometries.
Tectonism, in the form of progressive tilting of the basin margins, will also add

noise to onlap patterns, with intra-formational onlap occurring as older beds are titled and

subsequently onlapped. The interplay between both internal factors, such as flow type at
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pinchout, and external factors, such as sediment supply and tectonism, therefore needs to

be taken account when using onlap patterns to infer basin evolution.

8.2 Can you resolve external controls on a deep-water sedimentary system?

Climate, tectonism and eustasy are the primary external controls on deep-water
sedimentary systems. Disentangling the relative impacts of these processes on a given deep-
water basin is often difficult due to poor chrono-stratigraphic resolution preventing robust
links between tectonic, climatic or eustatic changes. An attempt to disentangle these
controls was performed by Castelltort et al. (2017) using the 8"°C record of the Pyrenean
foreland basin. The 8"°C record is sensitive to sea-level and climate and allowed Castelltort
et al. (2018) show that periods of Pyrenean foreland deep-water deposition were controlled
by eustasy and tectonism. Chapter 3 reproduced this methodology to resolve the external
controls on deposition of the deep-water Gres d’Annot in the Eocene-Oligocene Alpine

foreland basin using the Chalufy locality as an example.

Resolving external controls on deep-water deposition

The 8"C record of fine-grained intervals at Chalufy, which are interpreted as
periods of decreased sediment supply, correlates with time-equivalent sections of North
Atlantic eustatic sea-level curves. Coarse-grained intervals between these fine-grained
internals are interpreted to represent periods of submarine fan progradation, and correlate
with periods of low or falling eustatic sea-level on these curves. Chapter 3 therefore
suggests that deep-marine deposition in the Alpine foreland basin was enhanced by eustatic
sea-level falls. These sea-levels falls are were caused by cooling events during the stepped
transition from Eocene greenhouse conditions to Oligocene icehouse conditions, within
the period known as the Eocene-Oligocene Transition (EOT). Climate change may
therefore have also supported the growth of submarine fans by reducing hinterland
vegetation during the cooling events, thus enhancing run-off into fluvial systems and

sediment supply to the deep sea.

Chapter 3 also showed that deposition in the deep-water Alpine foreland was
influenced by other external factors, with a period of fan delta aggradation and deep-
marine channelization occurring during a eustatic highstand. This is inferred to have been
caused by a transient increase in sediment supply during a period of tectonic deformation

and uplift in the tectonically-active Corsica-Sardinia hinterland. This inferred sediment
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supply increase would have outpaced accommodation creation during the rising sea-level,

causing submarine fan advancement.

Can deep-water systems modulate their own external controls?

During the EOT cooling was enhanced by falling atmospheric CO»levels. Chapter
4 therefore also proposes that enhanced burial of organic carbon in growing submarine
fans during these sea-level falls will have acted as a positive feedback on atmospheric CO»
levels, with falling CO» levels causing cooling and glaciation, which dropped sea-levels and
enhanced organic carbon burial in submarine fans, which further deceased CO, and
cooling. The external controls of eustasy and climate may therefore both modulate, and be

modulated by, deep-marine deposition.

8.3 What is the response of a deep-water sedimentary system to tectonic activity?

Chapter 4 showed that low eustatic sea-levels and cooler climates caused enhanced
sediment supply to the Paleogene Alpine foreland deep-water basin, with deposition during
high eustatic sea-levels inferred to have been driven by a period of hinterland uplift and
erosion. Deep-water deposition in the Paleogene post-rift North Sea has also been shown

to be influenced by hinterland uplift (e.g. White and Lovell, 1997).

Response of a deep-water basin to tectonism

Chapter 5 shows that the initial plume-induced tectonic perturbation at ~63 Ma
was associated with widespread mass-transport in the deep-marine North Sea Basin. This is
most clearly resolved by the emplacement of a major mass-transport-complex (MTC) in the
Central Graben, which was termed the ‘Halibut Slide’. The Halibut Slide body is ~200 km
long and ~30 km wide, making it the largest MTC discovered in an epicontinental basin.
Scours ~1 km wide and ~150 m deep indicate the Slide was derived from the paleoshelf in
the Moray Firth, which is located close to major fault zones that were reactivated by both
plume-induced tectonic perturbations and the Alpine orogeny. Chapter 5 therefore
suggested that this reactivation and associated seismicity caused instability around the
North Sea, resulting in the emplacement of the Halibut Slide and other MTCs deep in the

basin.

As plume-related dynamic uplift continued during the Paleocene siliciclastic
systems were able to establish themselves and prograde across on the shelf, resulting in the

deposition of extensive sand-rich submarine fans across the North Sea. The distribution of
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these fans was influenced by the topography of the early mass-transport-dominated period
for 10 million years and into the early Eocene. Similar patterns have been observed in
Paleocene deep-water systems of the eastern North Sea, with sand-dominated channel-fills
and lobe complexes prograding over an early mass-transport-dominated interval during a
period of tectonic perturbation (Semme et al. 2019). The results of Chapter 4 are also in
line with these findings, with sand-dominated channel fills inferred to form during a period
of hinterland tectonism in the Alpine foreland. The lack of a mass-transport-dominated
interval in the Alpine foreland may be due to its much smaller size and shorter depositional
duration, which would have prevented the build-up of significant thicknesses of sediment
on the slope. The North Sea accumulated significant thicknesses of sediment during post-
rift tectonic quiescence through the Cretaceous, thus making the basin susceptible to mass-

failure when tectonism initiated.

A generic model

Chapter 5 therefore shows that the sedimentary response of a deep-water basin to
tectonic activity is characterised initially by intra-basinal mass-transport as the system is
brought out of equilibrium by tectonic rejuvenation. As the erosional products of the
uplifted hinterland begin to reach the deep-sea sand-rich submarine fans are able to build
and prograde. These newly-established deep-water systems will be affected by both the
magnitude of the external tectonic processes, e.g. uplift rates, and by internal influences,
such as the depositional topography of the initial mass-transport-dominated period. As the
hinterland equilibrates to the new tectonic regime sediment supply will decrease and

submarine fan deposition will either be reduced or controlled by other external factors.

8.4 What is the stratigraphic evolution of a mixed deep-water system on an unstable

margin?

Chapters 3 and 4 showed the way in which a deep-water basin may be affected by
topography and eustasy, and chapter 5 showed how topography and tectonism may affect a
deep-marine basin. Chapter 6 assessed the exportability of these findings by investigating
the stratigraphic evolution of the Cretaceous post-rift Buduq Trough, Eastern Greater
Caucasus, Azerbaijan. This study also resulted in important contributions to the poorly-
understood sedimentology and stratigraphy of mixed-siliciclastic-carbonate deep-water
systems, and assessed the applicability of using purely siliciclastic deep-water systems as

analogues.
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Exhumed evolution of an unstable margin

The stratigraphic evolution of the Buduq Trough is represented by four stages: 1)
Early Cretaceous slope instability and mass-transport, 2) Aptian-Albian thin-bedded and
fine-grained siliciclastic lobe deposition, 3) Cenomanian-Turonian coarse-grained
submarine channel deposition, and 4) Conacian-Maastrichtian mixed siliciclastic-carbonate
lobe deposition. Each of these stages records basin-external events related to compression
during the opening of the Black Sea to the west, and eustatic sea-level fluctuations. Early
Cretaceous mass-transport and Cenomanian-Turonian channel deposition, for example,
occur in response to regional compressional events. The reason for the contrasting
depositional response to these events may be the same as within the Paleogene North Sea
(Chapter 5), with eatly tectonic perturbations causing mass-transport and later tectonic
perturbations causing progradation of now-established siliciclastic systems. The generic
model for the response of a deep-water basin to tectonic activity outlined in Chapter 5

therefore informs the understanding of the Buduq Trough in Chapter 6.

The results of Chapter 5 also predict the topographic control seen on deposition in
the Buduq Trough, with Early Cretaceous mass-transport in the Trough affecting deep-
water depositional patterns throughout the remainder of the Cretaceous period, further
indicating that the generic stratigraphic model outlined in the previous section to ongoing
tectonism may be commonplace in other deep-water basins, and that the generic model

outlined in the previous section is valid.

Mixed systems as a warning for the interpretation of single-lithology systems?

The sedimentological evolution of the Buduq Trough (Chapter 6) is similar to that
of the Paleogene North Sea (Chapter 5), with both systems characterised by periods of
contemporaneous siliciclastic and carbonate deposition that are inferred to have different
provenances. This was shown from Chapter 6 to result in a complex vertical relationship,
where the proximal and distal components of each system intersect and interact, thus
making stacking pattern interpretations difficult. This complexity was only identifiable due

to the obvious difference in the lithology between the two systems.

In systems characterised by a single lithology, e.g. siliciclastics, it would be almost
impossible to identify such a complexity at outcrop, with a given succession almost always

inferred to be sourced from the same point throughout its depositional duration. This may
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lead to erroneous stacking pattern interpretations, with apparently disorganised strata
actually reflecting progradation of one system and retrogradation of another in response to
changing hinterland drainage, for example. This highlights the need, where possible, to
compliment field-based observations with further analytical methods, such as isotope
geochemistry (Chapter 4) or provenance analysis (Kilhams et al., 2014), in order to better

constrain the external or internal influences on a given system.

8.5 What effect does topographic orientation have on confined turbidity currents?

The topographic controls on deep-water sedimentology and stratigraphy discussed
in Chapters 3 — 6 were investigated using the deposits of sediment-gravity flows. These
deposits were either studied via well-exposed but often incomplete outcrops, or from
subsurface data of limited resolution. There is therefore a need to understand how the
parent flows responded to topography, and how their deposits may have looked in their
entirety. Chapter 7 addressed this by presenting results from experimental models designed

to both simplify and mimic the topography that affected deposition in Chapters 3 — 0.

Four experiments were performed: unconfined, parallel confinement, oblique
confinement and frontal confinement. Each of these experiments differentially affected
flow velocities and deposits, highlighting the potential impact of topographic orientation

on deep-water systems.

Application to exhumed and subsurface basins

The results of Chapter 7 recreated some of the topographic controls on deposition
discussed in Chapters 3 — 6, and generated new insights for features described in these
Chapters. The experimental results, for example, provided insights into the influence of
topography on supercritical flows, which are becoming increasingly recognised as
important builders of deep-water stratigraphy. The wedged and steep-faced deposits
formed up-dip of topography in Chapter 7 have been explained by upstream-migrating
hydraulic jumps formed due to rapid deceleration of supercritical flows in this study and
others (e.g. Morris and Alexander, 1994). Chapter 7 also expanded on existing facies
models for supercritical deposits built on outcrop and modern observations (e.g. Postma
and Cartigny, 2014) to hypothesize on the nature of the facies that would be expected in
topographically-affected supercritical deposits. Thick sequences of retrogradational massive

and planar-laminated sandstones, for example, are expected upstream of topography, while
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slope erosion and plunge-pool formation are expected immediately downstream of

topography.

This model-based prediction has been used to hypothesize that the formation of
thick and coarse sandstones upstream of a fault scarp in Chapter 3 may be attributed to
such processes. Chapter 7 also recreated the run-up and onlap described in Chapter 3,
further reinforcing the ideas proposed regarding onlap evolution in that chapter. Seismic
visualization of this run-up from the Central Graben of the North Sea provided a
subsurface analogue for the onlap hypothesized in Chapter 3 and illustrated in Chapter 7,
indicating that this stratigraphic pattern may be resolvable in the subsurface and common

in deep-water basins.

Topographic influences on external signal transfer

Chapter 4 showed that external factors affecting the Alpine foreland basin were
transported efficiently to deep-water, thus allowing a signal to be recorded and resolved.
Chapter 7 provides a mechanism to explain why this might be the case, with topographic
orientation exerting a control on how much of the external signal (the experiment flow) is
transferred to the deep basin (the lower slope of the flume tank). Lateral confinement,
much like the confinement that characterizes large sections of the Alpine foreland basin,
allows more of the signal to transferred into the basin, while oblique and frontal
confinement traps the signal on the slope. A lack of confinement may also act to reduce
the signal preservation through flow expansion and dilution, and complications arising
through compensational stacking. This indicates that the reason for the effective resolution
of external signals in the Chapter 4 may have been due to the regional lateral confinement
of the Alpine foreland basin transporting the signal basinwards. The external influence of
enhanced sediment supply to deep-water and consequent progradation was therefore
enhanced by the influence of basinal topography. The ability for the signal to be resolved

by the methods of Chapter 4 was also therefore enhanced.
8.6 Future research directions

Stratigraphic evolution of onlap in outcrop and subsurface

The stratigraphic evolution of onlap outlined in Chapter 3 is based on field
observations from the Annot Basin coupled with a simple numerical model. Future
research should seek to identify the comparative onlap patterns in other exhumed basins or

in the subsurface. The Grand Coyer basin, for example, is immediately down-dip of the
225



Annot Basin, and appears to display many of the features described in Chapter 3
(Stanbrook et al. 2004). There therefore appears to be potential for reappraising the onlap

surfaces of this, and other, Greés d’Annot basins in light of the findings in Chapter 3.

Subsurface basins with extensive lithological and seismic data coverage, such as the
Gulf of Mexico and North Sea, would be ideal for future subsutface assessments of the
model, however they may lack the resolution to accurately trace seismic reflections
representing lithological transitions toward onlap. Shallower seismic with higher resolution,
such as around the Golo fan in Corsica (Gervais et al. 2004; Sweet et al. 2019), may
mitigate against this, however there is less lithological control. Synthetic seismic models
(e.g. Bakke et al. 2013) may also allow for both lithological and seismic assessment of the
model, and may be tested across different resolutions to see what resolution is required to
identify lobe sub-environment transitions and consequent onlap patterns in confined

basins.

Tracking external signals

The use of isotope geochemistry as a tool for resolving external controls on deep-
water deposition has proven to be successful in the Pyrenean (Castelltort et al. 2018) and
the Alpine foreland basin (Chapter 4). Extension of this research is proposed in two
directions: 1) detailed geochemical correlation in the Alpine foreland and 2) geochemical

investigation of other deep-water basins.

Extensive outcrop belts of the Grés d’Annot have been chrono-stratigraphically
correlated around the Alpine foreland basin. These outcrops contain frequent fine-grained
hemipelagic intervals that should record the same signals as resolved in the Chalufy
outcrop along with greater constraint on controls prior to Chalufy deposition, such as at
Peira Cava, and after Chalufy deposition, such as at Barréme. An integration of all these
geochemical records could provide more information on how external controls on Alpine
deposition varied across longer time-scales, and if the depositional response to climate and

eustasy identified in Chapter 4 was always similar.

Application of the methods outlined in Chapter 4 should also be applied to other
deep-water basins where chrono-stratigraphic correlation exists. It would be particularly
important to extend the method to basins in different tectonic settings, such as rift and

post-rift basins. The Pleistocene Gulf of Corinth rift basin (e.g. Cullen et al. 2019) and
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Cretaceous Baja California post-rift basin (e.g. Kneller et al. 2019), for example, are well-
studied deep-water basins with excellent chrono-stratigraphic constraint that would greatly

benefit from the potential insights derived from this method.

Cretaceous of the Eastern Greater Caucasus

Chapter 6 presented the stratigraphic evolution of the Buduq Trough within the
Eastern Greater Caucasus, Azerbaijan. There remains, however, extensive outcrops of
Cretaceous-aged sediments in other structural zones within the Greater Caucasus. Future
research should focus on extending the sedimentological and stratigraphic findings of
Chapter 6 across the entire Cretaceous post-rift basin. This would increase understanding
of both the palacogeographic evolution of the basin, such as sediment input points and
lateral-distal facies variations, and the response of the basin to the external controls
outlined in Chapter 6, such as whether tectonic activity was a greater influence on the
stratigraphic record of the basin closer to the locus of activity in the Black Sea toward the

west.

Physical modelling extension

It is suggested that extensions to the physical models described in Chapter 7 should
focus on: 1) performing scalable experiments on erodible topographic barriers with
different geometries, such as salt-diapir-analogous mounds, 2) performing experiments
with multiple confining topographic barriers on one slope, such as two laterally confining
barriers, 3) releasing sequential flows into the basin to assess the stacking pattern
predictions made in this study, and 4) using barriers of different heights and steepness to

compare how flows and their deposits are influenced by varying degrees of confining relief.

These additional experiments would further constrain the findings of Chapter 7 and
allow for experimental validation of many hypotheses proposed for deposition in salt-diapir
influenced basins. Releasing sequential flows onto topographically-affected slopes would be
particularly beneficial as stacking patterns in confined basins remain poorly understood due
to 3D control on stacking patterns being rare, as discussed through the Le Ray correlation
of Chapter 3. Future experimental models of stacking patterns may therefore be the most
suitable method for tackling this research problem. Varying barrier height and steepness
would be useful for assessing run-up of turbidity currents, flow stratification and the

topographic limits of hydraulic jump formation.
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CHAPTER 9:Conclusions

e An outcrop- and numerically-derived model for the stratigraphic evolution of onlap is
proposed. During lobe progradation into a confined basin the first flows to reach the
basin margin will be of a low-concentration due to longitudinal flow dilution. These
low-concentration flows will be less dense and therefore more capable of flowing up
counter-slopes, resulting in low-density turbidites deposited high on confining basin
margins. Higher-concentration hybrid flows formed in the proximal fringe will follow
these lower-concentration flows, resulting in intra-formational onlap against the fringe
deposited higher on the slope. Continued progradation will further complicate these
onlap patterns as flows lower in concentration and more able to run-up counter-slopes
in the off-axis, and higher-concentration and less able to run-up counter-slopes in the
axis. The resulting onlap trends will follow a predictable landward and basinward
pinchout pattern, which is numerically predicted through the negative correlation

between sediment-gravity-flow run-up height and concentration.

These internally-modulated onlap patterns will obscure the externally-modulated onlap
patterns created by sediment supply and subsidence variations. Future use of onlap
patterns as indicators of changing external factors should therefore appreciate the effect

that internal processes have on onlap patterns.

e External influences on deep-water deposition are shown to be resolved within the
sedimentological, stratigraphic and geochemical record of a deep-water system. The 8"°C
record of the Gres d’Annot of the Focene-Oligocene Alpine foreland indicates that
periods of submarine fan progradation correlate with cooling events associated with the
transition from Eocene greenhouse to Oligocene icehouse conditions (EOT). These
cooling events increased hinterland aridity and lowered sea-levels. This is inferred to
have increased hinterland erosion rates and sediment supply to fluvio-deltaic systems
that were able to quickly prograde across the shallow or exposed shelf and deposit
sediment directly in deeper-waters. A period of coarse-grained deep-water deposition
also occurred during highstand, indicating sediment supply was able to compete with
accommodation creation during this period. This increase in sediment supply is
suggested to have been caused by uplift and erosion of the tectonically-active Corsica-
Sardinia massif to the south. The relative influence of climate, eustasy and tectonism on
the stratigraphic record of the Eocene-Oligocene Alpine foreland therefore changed

through time, with tectonism periodically overriding the climatic and eustatic influence.
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It is also proposed that the global submarine fan growth and consequent increased
burial of terrigenous organic carbon during these EOT cooling steps acted as an
important global carbon sink, which helped reduced CO; levels in the atmosphere and
aid the transition from greenhouse to icehouse conditions. Submarine fans are therefore

modulators of the external factors that affect their deposition.

The stratigraphic evolution of the Paleogene deep-water system within the North Sea
Central Graben is shown to be heavily influenced by external tectonism associated with
the early phases of mantle plume impingement and North Atlantic formation. Initial
tectonic rejuvenation caused widespread slope instability and voluminous mass-
transport deposition, such as emplacement of the ~200-km long Halibut Slide. As
tectonism and hinterland uplift continued sand-rich deep-marine systems were
established in the Central Graben. Deposition in these systems were controlled by both
external tectonism and internal topography that was formed by the early mass-transport

relief, remnant Mesozoic rift topography, and salt diapirism.

This stratigraphic evolution is shown to be repeated in the Cretaceous-aged Buduq
Trough of the Easter Greater Caucasus - an analogous post-rift basin. There, tectonic
activity associated with opening of the Black Sea caused widespread mass-transport.
This mass-transport acted to control the sedimentological and stratigraphic evolution
of later siliciclastic systems. The identification of this stratigraphic pattern in two
separate basins indicates that such a pattern may be common in analogous deep-water
basins affected by external forces, with the initial depositional response to the external

response acting as internal influence on subsequent depositional responses.

Deep-water systems characterised by contemporaneous siliciclastic and carbonate
sediment-gravity-flow deposition are shown to display facies, facies associations and
stacking patterns that vary from their siliciclastic counterparts. Mixing of the two
systems results in 1) mixed-event-beds that record differing aggradation rates between
finer-grained carbonate and coarser-grained siliciclastic flows, 2) the need to interpret a
given vertical section with separate carbonate, siliciclastic and mixed facies associations,
and 3) internal modulation of each system by the other resulting in a loss of identifiable

stacking patterns.
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Experimental turbulent flows and their deposits are shown to be heavily influenced by
the orientation of topography they interact with. Laterally-confined flows are
accelerated relative to unconfined flows, and deposit farther into the basin. Obliquely-
confined flows form two separate areas of thickened deposition, with part of the
deposit deflected upstream of topography and part of the deposit able to surmount the
topography and deposit downstream. Oblique confinement also causes significant
velocity increases upstream of topography and consequently significant erosion of the
confining topography. Frontal-confinement causes deflection and deposition upstream
of topography and erosion downstream of topography. Flow criticality is also shown to
be important, with thickened deposition upstream of topography inferred to be caused
by sudden deceleration and hydraulic jump formation. These experimental observations

are also inferred to explain some of the bedforms observed in the Gres d’Annot.

These experiments highlight the control that variable basin-internal topography has on
1) the erosive capabilities of flows, 2) the distribution of the deposits of these flows, 3)
the potential complexity of stacking patterns produced by variable topography, and 4)
the effect that topographic orientation will have on the ability of a deep-water system
to record external signals affecting deposition, with lateral confinement aiding signal
transfer and oblique frontal confinement potentially slowing or complicating signal

transfer.
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CHAPTER 11: Appendices

11.1 Appendix A: Annot field data

All sedimentary logs used in Chapter 3 available for download from the online repository
for this thesis at: https://doi.org/10.6084/m9.figshare.12400730.v2

11.2 Appendix C: Chalufy geochemical data

Bag_Label Sample_Number Lithology Height_m Position TOC TOC_err IC  IC_err XRD_Calc Calc_err XRD_Qtz Qtz_err d13C d180 d180O_vsmow
-8 1 1 0 0.5
-7 2 1 0.5 0.5 021 -452 2625
-6 3 1 1 0.5 036 0.025 1.68 0.025 16.48 0336 2733 0401  -05 -45 262
-5 4 1 1.5 0.5 -0.35 -7.73 2294
-4 5 1 2 0.5 -0.81 -7.07 23.62
-3 6 1 25 0.5 036 -4.92 2584
2 7 1 3 0.5
-1 8 1 3.5 0.5 -0.8 -6.35 2437
1 9 2 4 1 -0.52 -4.61 26.15
1B 10 2 4.5 1 -1 -45 263
2 11 2 5 1
2B 12 2 5.5 1 03 0.025 2.04 0.025 19.15 0.393 26.46 0442  -0.19 -5.77 2496
3 13 2 6 1 -05 -45 262
3B 14 2 7 1 -1.01 -5.08 25.67
4 15 2 8.8 1 04 0.025 1.61 0.025 17.23 0.442 26.94 0.606  -0.73 -3.14 27.67
4B 16 2 9.5 1 0.22 -849 2216
8 20 2 322 2
9 21 2 327 2 -2.03 -345 27.35
10 22 2 332 2 -1.27 -7.02 23.67
11 23 2 337 2 -1.59 -7.06 23.63
12 24 2 342 2 0.38 0.025 2.34 0.025 20.33 0477 29.22 0.569  -0.88 -3.58 27.22
13 25 2 347 2 -0.82 -8.58 22.06
14 26 2 352 2 -0.7 652 24.19
15 27 2 357 2 -0.19 -6.91 23.78
16 28 2 36.2 2 -0.18 -6.89 23.81
17 29 2 36.7 2 -0.11 -6.85 23.84
18 30 2 372 2 -04 -543 2531
19 31 2 377 2 -244 -7.88 2278
20 32 2 382 2 -0.94 -9.54 21.07
21 33 2 387 2 -049 -5.62 25.12
22 34 2 39.2 2 141 -495 2581
23 35 2 39.7 2 07 -53 254
24 36 2 40.2 2 -0.62 -6.63 24.07
25 37 2 40.7 2 -0.98 -6.88 23.82
26 38 2 412 2 -0.85 -4.24 26.54
27 39 2 41.7 2 -07 57 25
28 40 2 422 2 029 0.025 292 0.025 2637 0.44 25.14 0.409
29 41 2 427 2
30 42 2 432 2 -08 -6.6 241
31 43 2 437 2 -1.12 -6.55 24.15
32 44 2 44.2 2 -0.08 -5.15 25.6
33 45 2 44.7 2 -128 -622 245
34 46 2 452 2 1.05 -5.84 24.89
35 47 2 45.7 2
36 48 2 46.2 2 -0.46 -6.89 23.81
37 49 2 46.7 2 -1.1 -6.11 24.61
38 50 2 472 2 -0.95 -7.39 23.29
39 51 2 47.7 2 -0.87 -6.18 24.54
40 52 2 482 2 -1.6 7.1 236
41 53 2 487 2 -0.51 -6.57 24.14
54 2 49.2 2 -246 -744 2324
B 55 2 49.7 2 -2.12 -829 2237
C 56 2 50.2 2 -0.18 -9.83 20.77
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Above Slump 2 127 3 103 3 -1.37 -456 2621
Above Slump 3 128 3 103.5 3 -0.9 -505 257
Above Slump 4 129 3 104 3 -1.85 -85 2215

Table 11.1: TOC, isotopic and XRD data from the Chalufy
section.
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Figure 11.2: Cross-plot of 6180 v 613C indicates no correlation, and therefore a

minimum of diagenetic alteration.
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Foraminifera é: 43 R 5 Foraminifera

Figure  11.4: Thin-section  photomicrographs taken under plane polarized light (PPL) (left) and
cathodoluminescence (CL) (right). (A>B) Heterogeneons matrix: comprised of mud (light brown in PPL) with
silt siged detrital quartz and calcite grains (respectively blne and orange under CL) and foraminifera (arrowed).
Stable isotope measurements were derived from this foraminifera-rich material. (B&C) Minor fracture (white
arrow) crosscut by a major fracture (red arrow) both cemented by dull blne luminescing caleite. The major fracture
is approximately bed parallel, suggesting stylolite cementation. (D&E) Organic matter (dark brown to black in
PPL) is bed parallel. Well-developed laminations of quartz-rich (red arrows) and calcite-rich (white arrows)
sediment (respectively blne and orange under CL).
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11.3 Appendix D: Supplementary seismic and well data from Central North Sea

Figure 11.5: Intra-slide spectral deposition of the Halibut Slide interval.
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Figure 11.6: Spectral decomposition of the top surface of the Halibut Slide interval.
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Figure 11.7: A) Sonic, gamma and synthetic seismogram for well 22/ 30a-1
Fig. 1). Sonic and gamma values decrease right to left. B) Synthetic
generation window and wireline logs for 22/30a-1 showing the petrophysica
characteristics of the Halibut Slide.
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11.4 Appendix E: All logged Cretaceous sections

All field data and code used in Chapter 6 is available for download from the online

https://doi.org/10.6084/m9.figshare.12400730.v2 and

at:

thesis

repository for this

_2020

https://github.com/esltgs/azerbaijan

Yo ], bupng agy punoiv suotpss pasao] Jo JUN 67| | N
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Log Latitude Longitude Altitude (m)

1A 41.19944 48.24528 1750
1B 41.20167 48.25444 1680
1C 41.20194 48.25167 1530
2B 41.19516 48.25966 1678
3B 41.20219 48.26127 1592
4A 41.20245 48.26867 1656
5A 41.2003 48.26479 1707
5B 41.20069 48.26451 1726
5C 41.20454 48.26743 1598
GA 41.13518 48.57189 1488
7A 41.09737 48.62845 1532
7B 41.09411 48.63032 1613
7C 41.0934 48.63184 1623
D 41.09359 48.62936 1564
8A 41.19291 48.35996 1887
8B 41.19317 48.35849 1907
8C 41.19345 48.35733 1948
9A 41.21245 48.19414 2485
10A 41.16091 48.58033 1247
11A 41.15792 48.57284 1221
12A 41.13845 48.55533 1777
13A 41.15009 48.58541 1165
13B 41.14625 48.62576 1165

Table 11.10: Location of measured sections
in the Buduq Trough.
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11.5 Appendix E: UVP, thickness and morphometric data from physical models

Measured velocities

Distance Unconfined (m Lateral (m Oblique (m Frontal (m

UVP (cm) sT) sT) sT) sT)

1 0 1.09 0.99 1.04 1.06
2 80 0.95 0.94 1.06 1.01
3 160 1.00 091 1.09 1.11
4 240 0.77 0.77 0.97 0.87
5 0 0.21 0.19 0.21 0.26
6 40 0.54 0.37 0.43 0.61
7 120 0.72 0.67 0.53 0.56
8 160 0.31 0.06 0.08 0.15

All Normalised (vs fastest measurement)

UVP Distance Unconfined Lateral Oblique Frontal
1 0.00 1.00 1.00 0.95 0.95
2 0.33 0.84 0.95 0.97 0.90
3 0.67 0.90 0.91 1.00 1.00
4 1.00 0.64 0.76 0.88 0.75
5 0.00 0.00 0.14 0.13 0.11
6 0.17 0.38 0.33 0.35 0.48
7 0.50 0.58 0.66 0.45 0.43
8 0.67 0.11 0.00 0.00 0.00

Lateral Normalised (vs UVP 4)

UVP Distance Unconfined Lateral Oblique Frontal
8 0.00 0.00 0.18 0.15 0.15
7 0.25 0.59 0.44 0.39 0.64
4 0.50 1.00 1.00 1.00 1.00
6 0.75 0.91 0.86 0.51 0.57
5 1.00 0.18 0.00 0.00 0.00

Table 11.11: Measured experimental
velocities.
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Thinning Rates

Centroid Axis Oft- Fringe

Axis
Unconfined
Thickness 64.58 50 20 10
Percent of thickness 1 0.77 0.31 0.15
Width (cm) 0 122 322 680
Width (norm) 0 0.18 0.47 1
Length (cm) 0 372 724
Length (norm) 0 0.51 1
Lateral
Thickness 55.92 50 20 10
Percent of thickness 1 0.89 0.36 0.18
Width (cm) 0 54 294 502
Width (norm) 0 0.11 0.59 1
Width (confined) (cm) 0 196 478 518
Width (confined) (norm) 0 0.39 0.95 1
Length (cm) 0 686 1610
Length (norm) 0 0.43 1
Oblique (Upstream)
Thickness 71 50 20 10
Percent of thickness 1 0.7 0.28 0.14
Width (cm) 0 220 480 560
Width (norm) 0 0.39 0.86 1
Width (confined) (cm) 0 130 210 230
Width (confined) (norm) 0 0.57 0.91 1
Length (cm) 0 700 1490
Length (norm) 0 0.47 1
Oblique (Downstream)
Thickness 58.08 50 20 10
Percent of thickness 1 0.86 0.34 0.17
Width (cm) 0 182 490 606
Width (norm) 0 0.3 0.81 1
Length (cm) 0 388 1010
Length (norm) 0 0.38 1
Frontal
Thickness 62.42 50 20 10
Percent of thickness 1 0.8 0.32 0.16
Width (cm) 0 228 428 696
Width (norm) 0 0.33 0.61 1
Length (cm) 0 388 904
Length (norm) 0 0.43 1

Table 11.12: Measured experimental deposit thicknesses and
thinning rates.
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Morphometrics

Run Confined

Unconfined 0

Lateral 1

Oblique
Upstream

Oblique

Downstream

Frontal
Downstream

Length
(mm)

4600
5060

3420

2140

2950

Width
(mm)

1280
850

650

1450

990

Thickness
(mm)

64.58
55.92

69.5

58.08

62.42

Length/
Width

3.59
5.95

5.26

1.48

2.98

Width/
Thickness

19.82
15.20
9.35

24.97

15.86

Table 11.13: Measured experimental deposit morphometrics.
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