39 research outputs found
On the importance of interstellar helium for the propagation of heavy cosmic rays
The influence of interstellar He on the fragmentation of heavy cosmic rays in the interstellar medium (ISM) has long been a controversial subject. While H-induced cross section data are now avialable over broad mass and energy ranges, little data for He-induced fragmentation exists. With the recent reports of accurate measurements of the secondary/primary ratios in cosmic rays and of H-induced cross sections the problem of including interstellar He in propagation calculations becomes even more critical. As is argued the escape lengths lambda e deduced from the B/C+) and Sc-Cr/Fe ratios cannot be reconciled within the frame of a simple leaky box model assuming the ISM composed of pure H. It is quite remarkable that the discrepancy is especially large in the GeV region where (1) secondary/primary ratios measured by several groups agree fairly well and (2) fragmentation cross sections have been recently measured with good accuracy
Charge and energy dependence of the residence time of cosmic ray nuclei below 15 GeV/nucleon
The relative abundance of nuclear species measured in cosmic rays at Earth has often been interpreted with the simple leaky box model. For this model to be consistent an essential requirement is that the escape length does not depend on the nuclear species. The discrepancy between escape length values derived from iron secondaries and from the B/C ratio was identified by Garcia-Munoz and his co-workers using a large amount of experimental data. Ormes and Protheroe found a similar trend in the HEAO data although they questioned its significance against uncertainties. They also showed that the change in the B/C ratio values implies a decrease of the residence time of cosmic rays at low energies in conflict with the diffusive convective picture. These conclusions crucially depend on the partial cross section values and their uncertainties. Recently new accurate cross sections of key importance for propagation calculations have been measured. Their statistical uncertainties are often better than 4% and their values significantly different from those previously accepted. Here, these new cross sections are used to compare the observed B/C+O and (Sc to Cr)/Fe ratio to those predicted with the simple leaky box model
Source spectral index of heavy cosmic ray nuclei
From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements
Cosmic ray neon, Wolf-Rayet stars, and the superbubble origin of galactic cosmic rays
The abundances of neon isotopes in the galactic cosmic rays (GCRs) are
reported using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the
Advanced Composition Explorer (ACE). We compare our ACE-CRIS data for neon and
refractory isotope ratios, and data from other experiments, with recent results
from two-component Wolf-Rayet (WR) models. The three largest deviations of GCR
isotope ratios from solar-system ratios predicted by these models are indeed
present in the GCRs. Since WR stars are evolutionary products of OB stars, and
most OB stars exist in OB associations that form superbubbles, the good
agreement of these data with WR models suggests that superbubbles are the
likely source of at least a substantial fraction of GCRs.Comment: 22 pages, 6 figures Accepted for publication by Ap
Galactic Cosmic Rays from Supernova Remnants (I) - a Cosmic Ray Composition controlled by Volatility and Mass-to-Charge Ratio
This is the first of a series of papers analysing the Galactic Cosmic Ray
composition and origin. We show that the Galactic Cosmic Ray source (GCRS)
composition is best described in terms of (i) a general enhancement of the
refractory elements relative to the volatile ones, and (ii) among the volatile
elements, an enhancement of the heavier elements relative to the lighter ones;
this mass dependence most likely reflects a mass-to-charge (A/Q) dependence of
the acceleration efficiency; among the refractory elements, there is NO such
enhancement of heavier species, or only a much weaker one. We regard as
coincidental the similarity between the GCRS composition and that of the solar
corona, which is biased according to first ionization potential. In a companion
paper, this GCRS composition is interpreted in terms of an acceleration by
supernova shock waves of interstellar and/or circumstellar (eg Ne22 rich
Wolf-Rayet wind) gas-phase and especially dust material.Comment: 23 pages plain TeX and 6 postscript figures, to appear in ApJ, also
available from ftp://wonka.physics.ncsu.edu/pub/elliso
The HEAO-3 cosmic ray isotope spectrometer
This paper describes the Cosmic Ray Isotope instrument launched aboard the HEAO-3 satellite on September 20, 1979. The primary purpose of the experiment is to measure the isotopic composition of cosmic ray nuclei from Be-7 to Fe-58 over the energy range 0.5 to 7 GeV/nucleon. In addition charge spectra will be measured between beryllium and tin over the energy range 0.5 to 25 GeV/nucleon. The charge and isotope abundances measured by the experiment provide essential information needed to further our understanding of the origin and propagation of high energy cosmic rays. The instrument consists of 5 Cerenkov counters, a 4 element neon flash tube hodoscope and a time-of-flight system. The determination of charge and energy for each particle is based on the multiple Cerenkov technique and the mass determination will be based upon a statistical analysis of particle trajectories in the geomagnetic field