357 research outputs found
A three-protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease
Only a minority of prostate cancers lead to death. Because no tissue biomarkers of aggressiveness other than Gleason score are available at diagnosis, many nonlethal cancers are treated aggressively. We evaluated whether a panel of biomarkers, associated with a range of disease outcomes in previous studies, could predict death from prostate cancer for men with localized disease. Using a case-only design, subjects were identified from three Australian epidemiological studies. Men who had died of their disease, cases (NÂ =Â 83), were matched to referents (NÂ =Â 232), those who had not died of prostate cancer, using incidence density sampling. Diagnostic tissue was retrieved to assess expression of AZGP1, MUC1, NKX3.1, p53, and PTEN by semiquantitative immunohistochemistry (IHC). Poisson regression was used to estimate mortality rate ratios (MRRs) adjusted for age, Gleason score, and stage and to estimate survival probabilities. Expression of MUC1 and p53 was associated with increased mortality (MRR 2.51, 95% CI 1.14-5.54, PÂ =Â 0.02 and 3.08, 95% CI 1.41-6.95, PÂ =Â 0.005, respectively), whereas AZGP1 expression was associated with decreased mortality (MRR 0.44, 95% CI 0.20-0.96, PÂ =Â 0.04). Analyzing all markers under a combined model indicated that the three markers were independent predictors of prostate cancer death and survival. For men with localized disease at diagnosis, assessment of AZGP1, MUC1, and p53 expression in diagnostic tissue by IHC could potentially improve estimates of risk of dying from prostate cancer based only on Gleason score and clinical stage
Comparing the frequency of common genetic variants and haplotypes between carriers and non-carriers of BRCA1 and BRCA2 deleterious mutations in Australian women diagnosed with breast cancer before 40 years of age
BACKGROUND: BRCA1 and BRCA2 mutations are found in a proportion of families with multiple early-onset breast cancers. There are a large number of different deleterious mutations in both genes, none of which would be detectable using standard genetic association studies. Single common variants and haplotypes of common variants may capture groups of deleterious mutations since some low prevalence haplotypes of common variants occur more frequently among chromosomes that carry rare, deleterious mutations than chromosomes that do not. METHODS: DNA sequence data for BRCA1 and BRCA2 was obtained from 571 participants from the Australian Breast Cancer Family Study. Genetic variants were classified as either deleterious mutations or common genetic variants. Variants tagging common polymorphisms were selected and haplotypes resolved using Haploview. Their frequency was compared to those with and without deleterious mutations using a permutation test. RESULTS: A common genetic variant in BRCA1 (3232A > G) was found to be over-represented in deleterious mutation carriers (p = 0.05), whereas a common genetic variant in BRCA2 (1342A > C) occurred less frequently in deleterious mutation carriers (p = 0.04). All four of the common BRCA1 variants used to form haplotypes occurred more frequently in the deleterious mutation carriers when compared to the non-carriers, but there was no evidence of a difference in the distributions between the two groups (p = 0.34). In BRCA2, all four common variants were found to occur less frequently in the deleterious mutation carriers when compared to non-carriers, but the evidence for difference in the distribution between the two groups was weak (p = 0.16). Several less common haplotypes of common BRCA1 variants were found to be over-represented among deleterious mutation carriers but there was no evidence for this at the population level. In BRCA2, only the most common haplotype was found to occur more frequently in deleterious mutation carriers, with again no evidence at the population level. CONCLUSIONS: We observed differences in the frequency of common genetic variants of the BRCA1 and BRCA2 and their haplotypes between early-onset breast cancer cases who did and did not carry deleterious mutations in these genes. Although our data provide only weak evidence for a difference in frequencies at the population level, the number of deleterious mutation carriers was low and the results may yet be substantiated in a larger study using pooled data
Morphological predictors of BRCA1 germline mutations in young women with breast cancer
BACKGROUND: Knowing a young woman with newly diagnosed breast cancer has a germline BRCA1 mutation informs her clinical management and that of her relatives. We sought an optimal strategy for identifying carriers using family history, breast cancer morphology and hormone receptor status data.METHODS: We studied a population-based sample of 452 Australian women with invasive breast cancer diagnosed before age 40 years for whom we conducted extensive germline mutation testing (29 carried a BRCA1 mutation) and a systematic pathology review, and collected three-generational family history and tumour ER and PR status. Predictors of mutation status were identified using multiple logistic regression. Areas under receiver operator characteristic (ROC) curves were estimated using five-fold stratified cross-validation.RESULTS: The probability of being a BRCA1 mutation carrier increased with number of selected histology features even after adjusting for family history and ER and PR status (Po0.0001). From the most parsimonious multivariate model, the odds ratio for being a carrier were: 9.7 (95% confidence interval: 2.6-47.0) for trabecular growth pattern (P=0.001); 7.8 (2.7-25.7) for mitotic index over 50 mitoses per 10 high-powered field (P 0.0003); and 2.7 (1.3-5.9) for each first-degree relative with breast cancer diagnosed before age 60 years (P 0.01). The area under the ROC curve was 0.87 (0.83-0.90).CONCLUSION: Pathology review, with attention to a few specific morphological features of invasive breast cancers, can identify almost all BRCA1 germline mutation carriers among women with early-onset breast cancer without taking into account family history. British Journal of Cancer (2011) 104, 903-909. doi: 10.1038/ bjc. 2011.41 www. bjcancer. co
Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies
BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis ( 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk
No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer
BACKGROUND: There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. METHODS: The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. RESULTS: The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. CONCLUSION: The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women
- …