18 research outputs found

    Allele-Specific Down-Regulation of RPTOR Expression Induced by Retinoids Contributes to Climate Adaptations

    Get PDF
    The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation

    Adaptive Variation Regulates the Expression of the Human SGK1 Gene in Response to Stress

    Get PDF
    The Serum and Glucocorticoid-regulated Kinase1 (SGK1) gene is a target of the glucocorticoid receptor (GR) and is central to the stress response in many human tissues. Because environmental stress varies across habitats, we hypothesized that natural selection shaped the geographic distribution of genetic variants regulating the level of SGK1 expression following GR activation. By combining population genetics and molecular biology methods, we identified a variant (rs9493857) with marked allele frequency differences between populations of African and European ancestry and with a strong correlation between allele frequency and latitude in worldwide population samples. This SNP is located in a GR-binding region upstream of SGK1 that was identified using a GR ChIP-chip. SNP rs9493857 also lies within a predicted binding site for Oct1, a transcription factor known to cooperate with the GR in the transactivation of target genes. Using ChIP assays, we show that both GR and Oct1 bind to this region and that the ancestral allele at rs9493857 binds the GR-Oct1 complex more efficiently than the derived allele. Finally, using a reporter gene assay, we demonstrate that the ancestral allele is associated with increased glucocorticoid-dependent gene expression when compared to the derived allele. Our results suggest a novel paradigm in which hormonal responsiveness is modulated by sequence variation in the regulatory regions of nuclear receptor target genes. Identifying such functional variants may shed light on the mechanisms underlying inter-individual variation in response to environmental stressors and to hormonal therapy, as well as in the susceptibility to hormone-dependent diseases
    corecore