78 research outputs found

    Experimental field studies to measure behavioral responses of cetaceans to sonar

    Get PDF
    Funding was provided by a variety of military and governmental funding sources from several nations acknowledged within referenced publications, notably the US Office of Naval Research, US Navy Living Marine Resources Program, and the navies of the USA, Norway, and the Netherlands. P.L.T. acknowledges the support of the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) in the completion of this study. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Substantial recent progress has been made in directly measuring behavioral responses of free-ranging marine mammals to sound using controlled exposure experiments. Many studies were motivated by concerns about observed and potential negative effects of military sonar, including stranding events. Well-established experimental methods and increasingly sophisticated technologies have enabled fine-resolution measurement of many aspects of baseline behavior and responses to sonar. Studies have considered increasingly diverse taxa, but primarily odontocete and mysticete cetaceans that are endangered, particularly sensitive, or frequently exposed to sonar. This review focuses on recent field experiments studying cetacean responses to simulated or actual active military sonars in the 1 to 8 kHz band. Overall results demonstrate that some individuals of different species display clear yet varied responses, some of which have negative implications, while others appear to tolerate relatively high levels, although such exposures may have other consequences not measured. Responses were highly variable and may not be fully predictable with simple acoustic exposure metrics (e.g. received sound level). Rather, differences among species and individuals along with contextual aspects of exposure (e.g. behavioral state) appear to affect response probability. These controlled experiments provide critically needed documentation of identified behavioral responses occurring upon known sonar exposures, and they directly inform regulatory assessments of potential effects. They also inform more targeted opportunistic monitoring of potential responses of animals during sonar operations and have stimulated adaptations of field methods to consider increasingly realistic exposure scenarios and how contextual factors such as behavioral state and source proximity influence response type and probability.Publisher PDFPeer reviewe

    Managing human activity and marine mammals: A biologically based, relativistic risk assessment framework

    Get PDF
    Presented here is a broadly applicable, transparent, repeatable analytical framework for assessing relative risk of anthropogenic disturbances on marine vertebrates, with the emphasis on the sound generating aspects of the activity. The objectives are to provide managers and action-proponents tools with which to objectively evaluate drivers of potential biological risk, to identify data gaps that limit assessment, and to identify actionable measures to reduce risk. Current regulatory assessments of how human activities (particularly those that produce sound) influence the likelihood of marine mammal behavioral responses and potential injury, rely principally on generalized characterizations of exposure and effect using simple, threshold-based criteria. While this is relatively straightforward in regulatory applications, this approach fails to adequately address realistic site and seasonal scenarios, other potential stressors, and scalable outcome probabilities. The risk assessment presented here is primarily based on a common and broad understanding of the spatial-temporal-spectral intersections of animals and anthropogenic activities, and specific examples of its application to hypothetical offshore wind farms are given. The resulting species- and activity-specific framework parses risk into two discrete factors: a population’s innate ‘vulnerability’ (potential degree of susceptibility to disturbance) and an ‘exposure index’ (magnitude-duration severity resulting from exposure to an activity). The classic intersection of these factors and their multi-dimensional components provides a relativistic risk assessment process for realistic evaluation of specified activity contexts, sites, and schedules, convolved with species-specific seasonal presence, behavioral-ecological context, and natural history. This process is inherently scalable, allowing a relativistic means of assessing potential disturbance scenarios, tunable to animal distribution, region, context, and degrees of spatial-temporal-spectral resolution

    Marine seismic surveys and ocean noise : time for coordinated and prudent planning

    Get PDF
    Marine seismic surveys use intense (eg >= 230 decibel [dB] root mean square [RMS]) sound impulses to explore the ocean bottom for hydrocarbon deposits, conduct geophysical research, and establish resource claims under the United Nations Convention on the Law of the Sea. The expansion of seismic surveys necessitates greater regional and international dialogue, partnerships, and planning to manage potential environmental risks. Data indicate several reasons for concern about the negative impacts of anthropogenic noise on numerous marine species, including habitat displacement, disruption of biologically important behaviors, masking of communication signals, chronic stress, and potential auditory damage. The sound impulses from seismic surveys - spanning temporal and spatial scales broader than those typically considered in environmental assessments - may have acute, cumulative, and chronic effects on marine organisms. Given the international and transboundary nature of noise from marine seismic surveys, we suggest the creation of an international regulatory instrument, potentially an annex to the existing International Convention on the Prevention of Pollution from Ships, to address the issue.Publisher PDFPeer reviewe

    Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats

    Get PDF
    Air-breathing marine predators must balance the conflicting demands of oxygen conservation during breath-hold and the cost of diving and locomotion to capture prey. However, it remains poorly understood how predators modulate foraging performance when feeding at different depths and in response to changes in prey distribution and type. Here, we used high-resolution multi-sensor tags attached to Risso's dolphins (Grampus griseus) and concurrent prey surveys to quantify their foraging performance over a range of depths and prey types. Dolphins (N = 33) foraged in shallow and deep habitats [seabed depths less or more than 560 m, respectively] and within the deep habitat, in vertically stratified prey features occurring at several aggregation levels. Generalized linear mixed-effects models indicated that dive kinematics were driven by foraging depth rather than habitat. Bottom-phase duration and number of buzzes (attempts to capture prey) per dive increased with depth. In deep dives, dolphins were gliding for >50% of descent and adopted higher pitch angles both during descent and ascents, which was likely to reduce energetic cost of longer transits. This lower cost of transit was counteracted by the record of highest vertical swim speeds, rolling maneuvers and stroke rates at depth, together with a 4-fold increase in the inter-buzz interval (IBI), suggesting higher costs of pursuing, and handling prey compared to shallow-water feeding. In spite of the increased capture effort at depth, dolphins managed to keep their estimated overall metabolic rate comparable across dive types. This indicates that adjustments in swimming modes may enable energy balance in deeper dives. If we think of the surface as a central place where divers return to breathe, our data match predictions that central place foragers should increase the number and likely quality of prey items at greater distances. These dolphins forage efficiently from near-shore benthic communities to depth-stratified scattering layers, enabling them to maximize their fitness

    Selective reactions to different killer whale call categories in two delphinid species

    Get PDF
    This research was supported by award RC-2154 from the Strategic Environmental Research and Development Program and funding from the Naval Facilities Engineering Command Atlantic and National Oceanic and Atmospheric Administration Fisheries, Southeast Region.The risk of predation is often invoked as an important factor influencing the evolution of social organization in cetaceans, but little direct information is available about how these aquatic mammals respond to predators or other perceived threats. We used controlled playback experiments to examine the behavioral responses of short-finned pilot whales (Globicephala macrorhynchus) off Cape Hatteras, NC, USA, and Risso's dolphins (Grampus griseus) off the coast of Southern California, USA, to the calls of a potential predator, mammal-eating killer whales. We transmitted calls of mammal-eating killer whales, conspecifics and baleen whales to 10 pilot whales and four Risso's dolphins equipped with multi-sensor archival acoustic recording tags (DTAGs). Only playbacks of killer whale calls resulted in significant changes in tagged animal heading. The strong responses observed in both species occurred only following exposure to a subset of killer whale calls, all of which contained multiple non-linear properties. This finding suggests that these structural features of killer whale calls convey information about predatory risk to pilot whales and Risso's dolphins. The observed responses differed between the two species; pilot whales approached the sound source while Risso's dolphins fled following playbacks. These divergent responses likely reflect differences in anti-predator response mediated by the social structure of the two species.Publisher PDFPeer reviewe

    First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar

    Get PDF
    Most marine mammal­ strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.Publisher PDFPeer reviewe
    corecore