55 research outputs found

    Evidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles

    Get PDF
    To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX) in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP) of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC) that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain

    Excitatory and inhibitory corticospinal responses to transcranial magnetic stimulation in patients with minor to moderate head injury

    No full text
    OBJECTIVES—The changes in excitatory and inhibitory responses to transcranial magnetic stimulation (TMS), as attested by motor evoked potential (MEP) and silent period (SP) parameters, were compared in patients who sustained minor to moderate head injury.
METHODS—A total of 38 patients with brain concussion, and diffuse, focal, and combined brain injury and 20 healthy volunteers were examined. The MEPs and SPs were recorded from the abductor pollicis brevis muscle after single pulse TMS 2 weeks after head trauma. The parameters assessed were the MEP resting threshold, the MEP/M wave amplitude ratio, the central motor conduction time (CMCT), the SP threshold, the interthreshold difference (ITD), and the SP duration (SPD).
RESULTS—The main finding was an increase in the ITD in patients with mild and moderate head injury due to the relatively greater augmentation of the MEP threshold. This was associated with a reduction of the MEP/M wave amplitude ratio. The degree of MEP and SP changes depended on severity of head injury and was not related to the type of brain lesions. The SPD did not differ significantly in brain concussion, or diffuse, focal and combined brain injury groups compared with the control group. The CMCT was prolonged in patients with diffuse and combined brain lesions. Among subjective complaints only fatigue was significantly related to ITD, MEP, and SP threshold abnormalities.
CONCLUSIONS—The results suggest that mechanisms involved in MEP and SP generation are differently affected in head injury, the first being impaired more severely. The increase of the ITD accompanied by reduction of the MEP/M wave amplitude ratio may reflect a dissociated impairment of inhibitory and excitatory components of central motor control in head trauma.


    The evolution of the treatment of traumatic cerebrovascular injury during wartime

    No full text
    The approach to traumatic craniocervical vascular injury has evolved significantly in recent years. Conflicts prior to Operations Iraqi and Enduring Freedom were characterized by minimal intervention in the setting of severe penetrating head injury, in large part due to limited far-forward resource availability. Consequently, sequelae of penetrating head injury like traumatic aneurysm formation remained poorly characterized with a paucity of pathophysiological descriptions. The current conflicts have seen dramatic improvements with respect to the management of severe penetrating and closed head injuries. As a result of the rapid field resuscitation and early cranial decompression, patients are surviving longer, which has led to diagnosis and treatment of entities that had previously gone undiagnosed. Therefore, in this paper the authors\u27 purpose is to review their experience with severe traumatic brain injury complicated by injury to the craniocervical vasculature. Historical approaches will be reviewed, and the importance of modern endovascular techniques will be emphasized
    • …
    corecore