52 research outputs found

    Odd viscosity in chiral active fluids

    Get PDF
    Chiral active fluids are materials composed of self-spinning rotors that continuously inject energy and angular momentum at the microscale. Out-of-equilibrium fluids with active-rotor constituents have been experimentally realized using nanoscale biomolecular motors, microscale active colloids, or macroscale driven chiral grains. Here, we show how such chiral active fluids break both parity and time-reversal symmetries in their steady states, giving rise to a dissipationless linear-response coefficient called odd viscosity in their constitutive relations. Odd viscosity couples pressure and vorticity leading, for example, to density modulations within a vortex profile. Moreover, chiral active fluids flow in the direction transverse to applied compression as in shock propagation experiments. We envision that this collective transverse response may be exploited to design self-assembled hydraulic cranks that convert between linear and rotational motion in microscopic machines powered by active-rotors fluids

    Optimal power and efficiency of odd engines

    Get PDF
    Odd materials feature antisymmetric response to perturbations. This anomalous property can stem from the nonequilibrium activity of their components, which is sustained by an external energy supply. These materials open the door to designing innovative engines which extract work by applying cyclic deformations, without any equivalent in equilibrium. Here, we reveal that the efficiency of such energy conversion, from local activity to macroscopic work, can be arbitrarily close to unity when the cycles of deformation are properly designed. We illustrate these principles in some canonical viscoelastic materials, which leads us to identify strategies for optimizing power and efficiency according to material properties, and to delineate guidelines for the design of more complex odd engines.Comment: 6 pages, 2 figure

    Hydrodynamic correlation functions of chiral active fluids

    Get PDF
    The success of spectroscopy to characterize equilibrium fluids, for example the heat capacity ratio, suggests a parallel approach for active fluids. Here, we start from a hydrodynamic description of chiral active fluids composed of spinning constituents and derive their low-frequency, long-wavelength response functions using the Kadanoff-Martin formalism. We find that the presence of odd (equivalently, Hall) viscosity leads to mixed density-vorticity response even at linear order. Such response, prohibited in time-reversal invariant fluids, is a large-scale manifestation of the microscopic breaking of time-reversal symmetry. Our work suggests possible experimental probes that can measure anomalous transport coefficients in active fluids through dynamic light scattering

    Anisotropic odd viscosity via a time-modulated drive

    Get PDF
    At equilibrium, the structure and response of ordered phases are typically determined by the spontaneous breaking of spatial symmetries. Out of equilibrium, spatial order itself can become a dynamically emergent concept. In this article, we show that spatially anisotropic viscous coefficients and stresses can be designed in a far-from-equilibrium fluid by applying to its constituents a time-modulated drive. If the drive induces a rotation whose rate is slowed down when the constituents point along specific directions, anisotropic structures and mechanical responses arise at long timescales. We demonstrate that the viscous response of such anisotropic driven fluids can acquire a tensorial, dissipationless component called anisotropic odd (or Hall) viscosity. Classical fluids with internal torques can display additional components of the odd viscosity neglected in previous studies of quantum Hall fluids that assumed angular momentum conservation. We show that these anisotropic and angular momentum-violating odd-viscosity coefficients can change even the bulk flow of an incompressible fluid by acting as a source of vorticity. In addition, shear distortions in the shape of an inclusion result in torques.Comment: 12 pages, 2 figure

    Topological edge states in equidistant arrays of Lithium Niobate nano-waveguides

    Full text link
    We report that equidistant 1D arrays of thin-film Lithium Niobate nano-waveguides generically support topological edge states. Unlike conventional coupled-waveguide topological systems, the topological properties of these arrays are dictated by the interplay between intra- and inter-modal couplings of two families of guided modes with different parities. Exploiting two modes within the same waveguide to design a topological invariant allows us to decrease the system size by a factor of two and substantially simplify the structure. We present two example geometries where topological edge states of different types (based on either quasi-TE or quasi-TM modes) can be observed within a wide range of wavelengths and array spacings
    corecore