9 research outputs found

    Interethnic diversity of NAT2 polymorphisms in Brazilian admixed populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-acetyltransferase type 2 (Nat2) is a phase II drug- metabolizing enzyme that plays a key role in the bioactivation of aromatic and heterocyclic amines. Its relevance in drug metabolism and disease susceptibility remains a central theme for pharmacogenetic research, mainly because of its genetic variability among human populations. In fact, the evolutionary and ethnic-specific SNPs on the <it>NAT2 </it>gene remain a focus for the potential discoveries in personalized drug therapy and genetic markers of diseases. Despite the wide characterization of <it>NAT2 </it>SNPs frequency in established ethnic groups, little data are available for highly admixed populations. In this context, five common <it>NAT2 </it>SNPs (<it>G191A</it>, <it>C481T</it>, <it>G590A</it>, <it>A803G </it>and G<it>857A</it>) were investigated in a highly admixed population comprised of Afro-Brazilians, Whites, and Amerindians in northeastern Brazil. Thus, we sought to determine whether the distribution of <it>NAT2 </it>polymorphism is different among these three ethnic groups.</p> <p>Results</p> <p>Overall, there were no statistically significant differences in the distribution of <it>NAT2 </it>polymorphism when Afro-Brazilian and White groups were compared. Even the allele frequency of <it>191A</it>, relatively common in African descendents, was not different between the Afro-Brazilian and White groups. However, allele and genotype frequencies of <it>G590A </it>were significantly higher in the Amerindian group than either in the Afro-Brazilian or White groups. Interestingly, a haplotype block between <it>G590A </it>and <it>A803G </it>was verified exclusively among Amerindians.</p> <p>Conclusions</p> <p>Our results indicate that ethnic admixture might contribute to a particular pattern of genetic diversity in the <it>NAT2 </it>gene and also offer new insights for the investigation of possible new <it>NAT2 </it>gene-environment effects in admixed populations.</p

    Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms

    Get PDF
    Rigorous and widely applicable indicators of biodiversity are needed to monitor the responses of ecosystems to global change and design effective conservation schemes. Among the potential indicators of biodiversity, those based on the functional traits of species and communities are interesting because they can be generalized to similar habitats and can be assessed by relatively rapid field assessment across eco-regions. Functional traits, however, have as yet been rarely considered in current common monitoring schemes. Moreover, standardized procedures of trait measurement and analyses have almost exclusively been developed for plants but different approaches have been used for different groups of organisms. Here we review approaches using functional traits as biodiversity indicators focussing not on plants as usual but particularly on animal groups that are commonly considered in different biodiversity monitoring schemes (benthic invertebrates, collembolans, above ground insects and birds). Further, we introduce a new framework based on functional traits indices and illustrate it using case studies where the traits of these organisms can help monitoring the response of biodiversity to different land use change drivers. We propose and test standard procedures to integrate different components of functional traits into biodiversity monitoring schemes across trophic levels and disciplines. We suggest that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring. In this way, the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices

    Immunostimulatory monoclonal antibodies for cancer therapy

    No full text
    Increasing immune responses with immunostimulatory monoclonal antibodies (mAbs) directed to immune-receptor molecules is a new and exciting strategy in cancer therapy. This expanding class of agents functions on crucial receptors, either antagonizing those that suppress immune responses or activating others that amplify immune responses. Complications such as autoimmunity and systemic inflammation are problematic side effects associated with these agents. However, promising synergy has been observed in preclinical models using combinations of immunostimulatory antibodies and other immunotherapy strategies or conventional cancer therapies. Importantly, mAbs of this type have now entered clinical trials with encouraging initial result

    Fungal aquaporins: cellular functions and ecophysiological perspectives

    No full text

    Mechanisms protecting host cells against bacterial pore-forming toxins

    No full text
    corecore