12,086 research outputs found

    Love kills: Simulations in Penna Ageing Model

    Full text link
    The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.Comment: 14 pages, including numerous figure

    From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio

    Get PDF
    The main goal of this work is to study element ratios that are important for the formation of planets of different masses. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggests that low-mass planets are more prevalent around stars with high [Mg/Si]. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition.Comment: Accepted by A&A (Letter to the Editor

    The first radial velocity measurements of a microlensing event: no evidence for the predicted binary

    Full text link
    The gravitational microlensing technique allows the discovery of exoplanets around stars distributed in the disk of the galaxy towards the bulge. However, the alignment of two stars that led to the discovery is unique over the timescale of a human life and cannot be re-observed. Moreover, the target host is often very faint and located in a crowded region. These difficulties hamper and often make impossible the follow-up of the target and study of its possible companions. Gould et al. (2013) predicted the radial-velocity curve of a binary system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT, ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To gather high-precision on faint targets of microlensing events, we proposed to use the source star as a reference to measure the lens radial velocities. We obtained ten radial velocities on the putative V=18 lens with a dispersion of ~100 m/s, spread over one year. Our measurements do not confirm the microlensing prediction for this binary system. The most likely scenario is that the assumed V=18 mag lens is actually a blend and not the primary lens that is 2 magnitude fainter. Further observations and analyses are needed to understand the microlensing observation and infer on the nature and characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette

    Enhanced SnS phase purity of films produced by rapid thermal processing of SnS2 precursors

    Get PDF
    In this work, we present a procedure to grow single phase SnS thin films consisting on the annealing of RF magnetron sputtered SnS2 precursors . A series of samples was produced by rapid thermal processing of precursors deposited both on bare and Mo coated glass. For those samples the time at maximum temperature and heating rate were variedN/

    The AMBRE Project: searching for the closest solar siblings

    Full text link
    Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Sun's birthplace. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. From the about 17000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, alpha- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between -0.03 to 0.03 dex. Our further selection left us with 4 candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the 2 of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD186302 is the most precisely characterized and probably the most probable candidate of our 4 best candidates. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.Comment: Accepted for publication in A&

    Abundance trend with condensation temperature for stars with different Galactic birth places

    Full text link
    During the past decade, several studies reported a correlation between chemical abundances of stars and condensation temperature (also known as Tc trend). However, the real astrophysical nature of this correlation is still debated. The main goal of this work is to explore the possible dependence of the Tc trend on stellar Galactocentric distances, Rmean. We used high-quality spectra of about 40 stars observed with the HARPS and UVES spectrographs to derive precise stellar parameters, chemical abundances, and stellar ages. A differential line-by-line analysis was applied to achieve the highest possible precision in the chemical abundances. We confirm previous results that [X/Fe] abundance ratios depend on stellar age and that for a given age, some elements also show a dependence on Rmean. When using the whole sample of stars, we observe a weak hint that the Tc trend depends on Rmean. The observed dependence is very complex and disappears when only stars with similar ages are considered. To conclude on the possible dependence of the Tc trend on the formation place of stars, a larger sample of stars with very similar atmospheric parameters and stellar ages observed at different Galactocentric distances is neededComment: Accepted by A&

    Various routes for low temperature RFmagnetron sputtering of Indium Tin Oxide films

    Get PDF
    In this work we have studied the influence of the Ar working pressure, substrate temperature, low power plasma irradiation and partial pressure of hydrogen in the RF-magnetron sputtering of indium tin oxide (ITO) thin films on glass substrates. This work aims at identifying the best conditions to achieve good quality ITO film at low temperature. Four sets of samples were prepared which were characterized by scanning electron microscopy, X-ray diffraction (XRD), Van der Pauw, transmittance and absorbance measurementsN/

    Collective Decoherence of Nuclear Spin Clusters

    Full text link
    The problem of dipole-dipole decoherence of nuclear spins is considered for strongly entangled spin cluster. Our results show that its dynamics can be described as the decoherence due to interaction with a composite bath consisting of fully correlated and uncorrelated parts. The correlated term causes the slower decay of coherence at larger times. The decoherence rate scales up as a square root of the number of spins giving the linear scaling of the resulting error. Our theory is consistent with recent experiment reported in decoherence of correlated spin clusters.Comment: 4 pages, 4 figure
    corecore