49 research outputs found

    MT1-MMP regulates urothelial cell invasion via transcriptional regulation of Dickkopf-3

    Get PDF
    Membrane type-1 matrix metalloproteinase (MT1-MMP) is a zinc-binding endopeptidase, which plays a crucial role in tumour growth, invasion and metastasis. We have shown previously that MT1-MMP has higher expression levels in the human urothelial cell carcinoma (UCC) tissue. We show here that siRNA against MT1-MMP blocks invasion in UCC cell lines. Invasion is also blocked by broad-spectrum protease and MMP inhibitors including tissue inhibitor of metalloproteinase-1 and -2. Membrane type-1-MMP can also regulate transcription. We have used expression arrays to identify genes that are differentially transcribed when siRNA is used to suppress MT1-MMP expression. Upon MT1-MMP knockdown, Dickkopf-3 (DKK3) expression was highly upregulated. The stability of DKK3 mRNA was unaffected under these conditions, suggesting transcriptional regulation of DKK3 by MT1-MMP. Dickkopf-3 has been previously shown to inhibit invasion. We confirm that the overexpression of DKK3 leads to decreased invasive potential as well as delayed wound healing. We show for the first time that the effects of MT1-MMP on cell invasion are mediated in part through changes in DKK3 gene transcription

    Reduction of metastasis using a non-volatile buffer

    Get PDF
    The tumor microenvironment is acidic as a consequence of upregulated glycolysis and poor perfusion and this acidity, in turn, promotes invasion and metastasis. We have recently demonstrated that chronic consumption of sodium bicarbonate increased tumor pH and reduced spontaneous and experimental metastases. This occurred without affecting systemic pH, which was compensated. Additionally, these prior data did not rule out the possibility that bicarbonate was working though effects on carbonic anhydrase, and not as a buffer per se. Here, we present evidence that chronic ingestion of a non-volatile buffer, 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid (IEPA) with a pKa of 6.9 also reduced metastasis in an experimental PC3M prostate cancer mouse model. Animals (n = 30) were injected with luciferase expressing PC3M prostate cancer cells either subcutaneously (s.c., n = 10) or intravenously (i.v., n = 20). Four days prior to inoculations, half of the animals for each experiment were provided drinking water containing 200 mM IEPA buffer. Animals were imaged weekly to follow metastasis, and these data showed that animals treated with IEPA had significantly fewer experimental lung metastasis compared to control groups (P < 0.04). Consistent with prior work, the pH of treated tumors was elevated compared to controls. IEPA is observable by in vivo magnetic resonance spectroscopy and this was used to measure the presence of IEPA in the bladder, confirming that it was orally available. The results of this study indicate that metastasis can be reduced by non-volatile buffers as well as bicarbonate and thus the effect appears to be due to pH buffering per se

    A Concerted HIF-1α/MT1-MMP Signalling Axis Regulates the Expression of the 3BP2 Adaptor Protein in Hypoxic Mesenchymal Stromal Cells

    Get PDF
    Increased plasticity, migratory and immunosuppressive abilities characterize mesenchymal stromal cells (MSC) which enable them to be active participants in the development of hypoxic solid tumours. Our understanding of the oncogenic adaptation of MSC to hypoxia however lacks the identification and characterization of specific biomarkers. In this study, we assessed the hypoxic regulation of 3BP2/SH3BP2 (Abl SH3-binding protein 2), an immune response adaptor/scaffold protein which regulates leukocyte differentiation and motility. Gene silencing of 3BP2 abrogated MSC migration in response to hypoxic cues and generation of MSC stably expressing the transcription factor hypoxia inducible factor 1alpha (HIF-1α) resulted in increased endogenous 3BP2 expression as well as cell migration. Analysis of the 3BP2 promoter sequence revealed only one potential HIF-1α binding site within the human but none in the murine sequence. An alternate early signalling cascade that regulated 3BP2 expression was found to involve membrane type-1 matrix metalloproteinase (MT1-MMP) transcriptional regulation which gene silencing abrogated 3BP2 expression in response to hypoxia. Collectively, we provide evidence for a concerted HIF-1α/MT1-MMP signalling axis that explains the induction of adaptor protein 3BP2 and which may link protein binding partners together and stimulate oncogenic MSC migration. These mechanistic observations support the potential for malignant transformation of MSC within hypoxic tumour stroma and may contribute to evasion of the immune system by a tumour

    Membrane associated proteases and their inhibitors in tumour angiogenesis

    No full text
    Cell surface proteolysis is an important mechanism for generating biologically active proteins that mediate a range of cellular functions and contribute to biological processes such as angiogenesis. Although most studies have focused on the plasminogen system and matrix metalloproteinases (MMPs), recently there has been an increase in the identification of membrane associated proteases, including serine proteases, ADAMs, and membrane-type MMPs (MT-MMPs). Normally, protease activity is tightly controlled by tissue inhibitors of MMPs (TIMPs) and plasminogen activator inhibitors (PAIs). The balance between active proteases and inhibitors is thought to determine the occurrence of proteolysis in vivo. High concentrations of proteolytic system components correlate with poor prognosis in many cancers. Paradoxically, high (not low) PAI-1 or TIMP concentrations predict poor survival in patients with various cancers. Recent observations indicate a much more complex role for protease inhibitors in tumour progression and angiogenesis than initially expected. As knowledge in the field of protease biology has improved, the unforeseen complexities of cell associated enzymes and their interaction with physiological inhibitors have emerged, often revealing unexpected mechanisms of action

    Extravasation and stromal cell uptake of fluorescent dextran in tumors.

    No full text
    Extravasation and stromal cell uptake of fluorescent dextran in tumors. An MMTV-PyMT mouse was injected i.v. with 10kD Alexa-Fluor-647-conjugated dextran (red), 70kD rhodamine-conjugated dextran (green) and non-targeted quantum dots (blue). From Sounni et al. (2010) Dis. Model. Mech. 3 pp. 317-332

    Rewiring of Lipid Metabolism and Storage in Ovarian Cancer Cells after Anti-VEGF Therapy

    No full text
    Anti-angiogenic therapy triggers metabolic alterations in experimental and human tumors, the best characterized being exacerbated glycolysis and lactate production. By using both Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) analysis, we found that treatment of ovarian cancer xenografts with the anti-Vascular Endothelial Growth Factor (VEGF) neutralizing antibody bevacizumab caused marked alterations of the tumor lipidomic profile, including increased levels of triacylglycerols and reduced saturation of lipid chains. Moreover, transcriptome analysis uncovered up-regulation of pathways involved in lipid metabolism. These alterations were accompanied by increased accumulation of lipid droplets in tumors. This phenomenon was reproduced under hypoxic conditions in vitro, where it mainly depended from uptake of exogenous lipids and was counteracted by treatment with the Liver X Receptor (LXR)-agonist GW3965, which inhibited cancer cell viability selectively under reduced serum conditions. This multi-level analysis indicates alterations of lipid metabolism following anti-VEGF therapy in ovarian cancer xenografts and suggests that LXR-agonists might empower anti-tumor effects of bevacizumab

    Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC)

    Get PDF
    A Disintegrin and Metalloprotease (ADAM) are transmembrane proteases displaying multiple functions. ADAM with ThromboSpondin-like motifs (ADAMTS) are secreted proteases characterised by thrombospondin (TS) motifs in their C-terminal domain. The aim of this work was to evaluate the expression pattern of ADAMs and ADAMTS in non small cell lung carcinomas (NSCLC) and to investigate the possible correlation between their expression and cancer progression. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot and immunohistochemical analyses were performed on NSCLC samples and corresponding nondiseased tissue fragments. Among the ADAMs evaluated (ADAM-8, -9, -10, -12, -15, -17, ADAMTS-1, TS-2 and TS-12), a modulation of ADAM-12 and ADAMTS-1 mRNA expression was observed. Amounts of ADAM-12 mRNA transcripts were increased in tumour tissues as compared to the corresponding controls. In sharp contrast, ADAMTS-1 mRNA levels were significantly lower in tumour tissues when compared to corresponding nondiseased lung. These results were corroborated at the protein level by Western blot and immunohistochemistry. A positive correlation was observed between the mRNA levels of ADAM-12 and those of two vascular endothelial growth factor (VEGF)-A isoforms (VEGF-A(165) and VEGF-A(121)). Taken together, these results providing evidence for an overexpression of ADAM-12 and a lower expression of ADAMTS-1 in non-small-cell lung cancer suggest that these proteases play different functions in cancer progression

    MT1-MMP protects breast carcinoma cells against type I collagen-induced apoptosis

    Full text link
    As invading breast carcinoma cells breach their underlying basement membrane, they become confronted with a dense three-dimensional reactive stroma dominated by type I collagen. To develop metastatic capabilities, invading tumor cells must acquire the capacity to negotiate this novel microenvironment. Collagen influences the fate of epithelial cells by inducing apoptosis. However, the mechanisms used by invading tumor cells to evade collagen-induced apoptosis remain to be defined. We demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP/MMP-14) confers breast cancer cells with the ability to escape apoptosis when embedded in a collagen gel and after orthotopic implantation in vivo. In the absence of MMP-14-dependent proteolysis, type I collagen triggers apoptosis by inducing the expression of the pro-apoptotic Bcl-2-interacting killer in luminal-like breast cancer cells. These findings reveal a new mechanism whereby MMP-14 activity promotes tumor progression by circumventing apoptosis
    corecore