26 research outputs found

    Comparison of Cytokine Expression in Mesenchymal Stem Cells from Human Placenta, Cord Blood, and Bone Marrow

    Get PDF
    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into lineages of mesenchymal tissues that are currently under investigation for a variety of therapeutic applications. The purpose of this study was to compare cytokine gene expression in MSCs from human placenta, cord blood (CB) and bone marrow (BM). The cytokine expression profiles of MSCs from BM, CB and placenta (amnion, decidua) were compared by proteome profiler array analysis. The cytokines that were expressed differently, in each type of MSC, were analyzed by real-time PCR. We evaluated 36 cytokines. Most types of MSCs had a common expression pattern including MIF (GIF, DER6), IL-8 (CXCL8), Serpin E1 (PAI-1), GROα(CXCL1), and IL-6. MCP-1, however, was expressed in both the MSCs from the BM and the amnion. sICAM-1 was expressed in both the amnion and decidua MSCs. SDF-1 was expressed only in the BM MSCs. Real-time PCR demonstrated the expression of the cytokines in each of the MSCs. The MSCs from bone marrow, placenta (amnion and decidua) and cord blood expressed the cytokines differently. These results suggest that cytokine induction and signal transduction are different in MSCs from different tissues

    Block Resection of the Chordoma in Sacrococcygeal Region: A Case Report

    No full text

    Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles.

    No full text
    Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5-2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry

    Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment

    No full text
    Magnesium (Mg) has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA) surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group) and the experimental group (HA-Mg group). The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell), BUN (Blood Urea Nitrogen), Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase) and ALT (Alanine Aminotransferase) values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period

    Evaluation of the plasma coagulation parameters of rats after a single injection of microparticles.

    No full text
    <p>Data presented as mean ± standard deviation. PT: Prothrombin Time; PTT: Partial Thromboplastic Time.</p><p>Evaluation of the plasma coagulation parameters of rats after a single injection of microparticles.</p

    Antimicrobial activity of microparticles in <i>Escherichia coli</i>.

    No full text
    <p>Evaluation of the kinetic of growth of <i>Escherichia coli</i> (ATCC 25922) for 24 h at 25°C in presence of PLGA-cef and ceftiofur.</p

    Evaluation of the blood biochemical parameters of rats after a single injection of microparticles.

    No full text
    <p>Data presented as mean ± standard deviation. ALP = Alkaline Phosphatase; LDH = Lactate dehydrogenase; GGT = Gamma glutamyltransferase; ALT = Alanine aminotransferase; AST = Aspartate Aminotransferase.</p><p>Evaluation of the blood biochemical parameters of rats after a single injection of microparticles.</p
    corecore