28 research outputs found

    Flight Mechanics Modeling and Post-Flight Analysis of ADEPT SR-1

    Get PDF
    Sounding Rocket One (SR-1), the first flight test of the Adaptable Deployable Entry and Placement Technology (ADEPT), was performed on Sept. 12, 2018. ADEPT is a deployable aeroshell that can be stowed during launch and then opened after launch to increase the drag area of the spacecraft when entering into a planetary atmosphere. The main objectives of the SR-1 flight test were to demonstrate that the ADEPT vehicle can be opened exo-atmospherically and to characterize the stability of the vehicle during atmospheric flight. The SR-1 test vehicle was a 0.7 m diameter 70 degree half-angle, faceted, sphere-cone, which was the primary payload on an UP Aerospace Spaceloft (SL) launch vehicle from the White Sands Missile Range (WSMR). ADEPT successfully separated from the spent booster in its stowed configuration, opened above 100 km altitude, and then landed in the deployed configuration within WSMR. The flight mechanics of the vehicle was modeled pre-flight for performance and range safety predictions. This paper describes the pre-flight ADEPT trajectory simulation and how the flight data compared with the predictions from the simulations

    Design/Build/Fly The Evolution of a Model Airplane

    Get PDF

    Investigation of Direct Force Control for Planetary Aerocapture at Neptune

    Get PDF
    In this work, a direct force control numerical predictor-corrector guidance architecture is developed to enable Neptune aerocapture using flight-heritage blunt body aeroshells. A linear aerodynamics model is formulated for a Mars Science Laboratory-derived aeroshell. The application of calculus of variations shows that the optimal angle of attack and side-slip angle control laws are bang-bang. A closed-loop numerical predictor-corrector direct force control guidance algorithm is developed and numerically simulated using the Program to Optimize Simulated Trajectories II. The Monte Carlo simulated trajectories are demonstrated to be robust to the modeled dispersions in aerodynamics, atmospheric density, and entry state. An aerocapture technology trade study demonstrates that blunt body direct force control aerocapture enables similar performance as slender body bank angle control but halves the peak g-loading

    Reconstruction of the Adaptable Deployable Entry and Placement Technology Sounding Rocket One Flight Test

    Get PDF
    The Adaptable Deployable Entry and Placement Technology Sounding Rocket One flight test is a demonstration experiment for deployable atmospheric decelerator technologies. The suborbital flight test occurred on 12 September 2018, at the White Sands Missile Range. Data from on-board and ground-based sensors were collected, from which the as-flown trajectory was reconstructed using an iterative extended Kalman filter-smoother. This paper describes the methodology, test vehicle instrumentation, and data analysis results from the flight test trajectory reconstruction

    SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    Get PDF
    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1

    Small Satellite-Sized Hypersonic Inflatable Aerodynamic Decelerators for Interplanetary Science Missions

    Get PDF
    To make the most of ridesharing opportunities, small satellite (SmallSat) mission designers endeavor to pack as much payload into a SmallSat-class form factor as possible. The mass and volume constraints of this smaller vehicle class present a challenge for interplanetary mission sets that require a means of achieving orbit insertion at their destination of interest. For a fully propulsive orbit insertion design, this may translate to the propellant mass being a significant fraction of the overall vehicle mass and prolonged insertion time. Aerocapture is a single quick maneuver that can significantly reduce the required propellant mass for orbit insertion. Because aerocapture uses a planet鈥檚 atmosphere to achieve the necessary change in velocity, a protective aeroshell is needed. The constraints imposed on secondary payloads render traditional rigid aeroshells mass and space prohibitive for the SmallSat class of vehicles; thus, warranting consideration of deployable designs that can be stowed compactly until needed for atmospheric entry. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is a deployable aeroshell that leverages inflatable toroids to achieve the large drag area needed for aerodynamic deceleration. While the technology is currently being analyzed for Mars human-scale missions, it has the potential applicability for interplanetary SmallSat-scale missions as well. This paper highlights a study conducted during an internship at NASA Langley Research Center to investigate the feasibility of using a scaled-down HIAD design in SmallSat aerocapture missions. Several scaling methodologies are investigated including use of parametric models and direct computer-aided design (CAD) model scaling. Candidate HIAD configurations that conform to secondary payload adapter requirements are identified. The Program to Optimize Simulated Trajectories II (POST2) is utilized to conduct orbit insertion performance and trajectory sensitivity studies using the candidate configurations at Earth, Venus, and Mars. The results of the study indicate that multiple SmallSat-sized HIAD designs, targeting a range of SmallSat payload classes, are feasible for planetary aerocapture missions to Mars and Venus as well as Earth-based aerocapture missions

    Aerodynamics for the ADEPT SR-1 Flight Experiment

    Get PDF
    Adaptable, Deployable, Entry, and Placement Technology (ADEPT) is a combination of a heatshield and an aerodynamic decelerator for atmospheric entry applications. The ADEPT Sounding Rocket (SR)-1 mission was a suborbital flight experiment of an 0.7 m-diameter ADEPT to verify system-level performance and to characterize dynamic stability behavior. The aerodynamic database for ADEPT SR-1 was constructed from non-continuum and continuum flowfield computations, along with data from recent ADEPT ground testing and the IRVE-3 flight test vehicle. High-altitude (free-molecular and transitional regimes) data were generated using DSMC methods. Pre-flight predictions of continuum static aerodynamics coefficients were derived from Reynolds-Averaged Navier-Stokes solutions at conditions along a design trajectory, with comparisons to available ground test data of the nano-ADEPT geometry. Dynamic pitch damping characteristics were taken from functional forms developed for the IRVE-3 flight test vehicle through ballistic range testing. Comparison of pre-flight predictions to post-flight reconstruction of aerodynamic force and moment coefficients is presented

    ASPIRE Flight Mechanics Modeling and Post Flight Analysis

    Get PDF
    The Advanced Supersonic Parachute Inflation Research and Experiment (ASPIRE) is a series of sounding rocket flights aimed at understanding the dynamics of supersonic parachutes that are used for Mars robotic applications. SR01 was the first sounding rocket flight of ASPIRE that occurred off the coast of Wallops Island, VA on Oct. 4, 2017 and showed the successful deployment and inflation of a Mars Science Laboratory built-to- print parachute in flight conditions similar to the 2012 Mars Science Laboratory (MSL) mission. SR02 was the second sounding rocket flight that also occurred off the coast of Wallops Island on March 31, 2018 and showcased the successful deployment and inflation of a new strengthened parachute being considered for the Mars 2020 mission at fifty percent higher dynamic pressure than observed on MSL. Prior to both flights, a multi-body flight dynamics simulation was developed to predict the parachute dynamics and was used, in conjunction with other tools, to target Mars-relevant flight conditions. After each flight, the reconstructed trajectory was used to validate the pre-flight dynamics simulation and recommend changes to improve predictions for future flights planned for the ASPIRE pro- gram. This paper describes the flight mechanics simulation and the post flight reconciliation process used to validate the flight models

    Flight Envelope Assessment of SmallSat Aerocapture Trajectories at Venus and Mars

    Get PDF
    Aerocapture is an increasingly studied orbit insertion concept for small satellite (SmallSat) missions beyond low Earth orbit (LEO). Compared to fully propulsive methods, aerocapture reduces the orbit-insertion propellant mass by approaching on a hyperbolic path and using the planetary atmosphere to reduce the vehicle鈥檚 velocity such that the final target orbit is achieved. This allows for an increase in payload mass delivered to orbit and a reduction in launch-to -orbit time. To analyze the feasibility at Venus and Mars, aerocapture flight envelope analysis is conducted by assessing the guidable trajectory space during atmospheric flight given entry conditions, vehicle properties, target parameters, and planet-dependent trajectory dispersions. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate both ballistic and lifting aerocapture trajectories with SmallSat-compatible aeroshell designs. The entry flight path angle is optimized to achieve a final target orbit for lift up/down and max/min control configurations. When plotted, the resulting area between the steep and shallow trajectories forms a flight envelope with planet-dependent 卤3蟽 atmospheric, aerodynamic, and delivery state dispersion profiles applied. The results presented in this paper show that SmallSat aerocapture is feasible for lifting aeroshell designs at Mars and Venus as well as ballistic vehicle designs at Mars
    corecore