28 research outputs found

    Identification of a novel splice-site mutation in the Lebercilin (LCA5) gene causing Leber congenital amaurosis

    Get PDF
    Purpose: Leber congenital amaurosis (LCA) is one of the most common causes of hereditary blindness in infants. To date, mutations in 13 known genes and at two other loci have been implicated in LCA causation. An examination of the known genes highlights several processes which, when defective, cause LCA, including photoreceptor development and maintenance, phototransduction, vitamin A metabolism, and protein trafficking. In addition, it has been known for some time that defects in sensory cilia can cause syndromes involving hereditary blindness. More recently evidence has come to light that non-syndromic LCA can also be a “ciliopathy.” Methods: Here we present a homozygosity mapping analysis in a consanguineous sibship that led to the identification of a mutation in the recently discovered LCA5 gene. Homozygosity mapping was done using Affymetrix 10K Xba I Gene Chip and a 24.5cM region on chromosome 6 (6q12- q16.3) was identified to be significantly homozygous. The LCA5 gene on this region was sequenced and cDNA sequencing also done to characterize the mutation. Results: A c.955G>A missense mutation in the last base of exon 6 causing disruption of the splice donor site was identified in both the affected sibs. Since there is a second consensus splice donor sequence 5 bp into the adjacent intron, this mutation results in a transcript with a 5 bp insertion of intronic sequence, leading to a frameshift and premature truncation. Conclusions: We report a missense mutation functionally altering the splice donor site and leading to a truncated protein. This is the second report of LCA5 mutations causing LCA. It may also be significant that one affected child died at eleven months of age due to asphyxia during sleep. To date the only phenotype unambiguously associated with mutations in this gene is LCA. However the LCA5 gene is known to be expressed in nasopharynx, trachea and lungs and was originally identified in the proteome of bronchial epithelium ciliary axonemes. The cause of death in this child may therefore imply that LCA5 mutations can in fact cause a wider spectrum of phenotypes including respiratory disease

    Haplogroup heterogeneity of LHON patients carrying the m.14484T>C mutation in India

    Get PDF
    Purpose: To investigate the clinical and mitochondrial DNA (mtDNA) haplogroup background of Indian Leber Hereditary Optic Neuropathy (LHON) patients carrying the m.14484T>C mutation. Methods: Detailed clinical investigation and complete mtDNA sequencing analysis was carried out for eight Indian LHON families with the m.14484T>C mutation. Haplogroup was constructed based on the evolutionarily important mtDNA variants. Results: In the present study, we characterized eight unrelated probands selected from 187 LHON cases. The overall penetrance of the disease was estimated to be 19.75% (16/81) in eight pedigrees with the m.14484T>C mutation and showed substantially higher sex bias (male:female = 13:3). The mtDNA haplogrouping revealed that they belong to diverse haplogroups; i.e. F1c1, M31a, U2a, M*, I1, M6, M3a1 and R30a. Interestingly, we did not find an association of the m.14484T>C mutation with any specific haplogroup within the Indian population. We also did not find any secondary mutation(s) in these pedigrees, which might affect the clinical expression of LHON. Conclusions: Contrary to earlier reports showing preferential association of the m.14484T>C mutation with western Eurasian haplogroup J and increased clinical penetrance when present in J1 subhaplogroup background, the present study shows that m.14484T>C arose independently in a different mtDNA haplogroup and ethnic background in India, which may influence the clinical expression of the disease

    Association of polymorphisms in the intron of TCF4 gene to late-onset Fuchs endothelial corneal dystrophy: An Indian cohort study

    No full text
    Purpose: Fuchs endothelial corneal dystrophy (FECD) is a progressive degenerative disease of the corneal endothelium. It is genetically heterogeneous and follows either an autosomal dominant or sporadic pattern of inheritance. Here, we have explored the association of four previously reported intronic single nucleotide polymorphisms and intronic CTG repeat expansions in TCF4 gene to FECD in an Indian cohort. Methods: The cohort consisting of 52 sporadic late-onset cases, 5 early-onset cases, and 148 controls was taken for the study. rs2286812 and rs613872 were genotyped by allele specific polymerase chain reaction (ASPCR) and PCR-based restriction digestion, respectively; rs17595731 and rs9954153 were genotyped by Taqman assay using real-time PCR. The quantitative assessment of the CTG repeat region was performed by PCR/Sanger DNA sequencing. The repeats were assessed qualitatively by short tandem repeat and triplet repeat primed PCR assays. The statistical analysis was performed using two-tailed Fisher's exact probability test. Results: SNPsrs613872 (G/T) for the 'G' allele (P value: 4.57 × 10−5) and rs17595731 (C/T) for the 'C' allele (P value: 1.87 × 10−5), respectively, showed a significant association to sporadic late-onset FECD. CTG repeat expansions were found to be associated with FECD with a P value = 2.4 × 10−3. Conclusion: rs613872, rs17595731, and CTG repeat expansions in intronic region of TCF4 are associated with increased risk of sporadic late-onset FECD in the Indian cohort studied

    Molecular profiling of complete congenital stationary night blindness: a pilot study on an Indian cohort

    No full text
    International audiencePURPOSE:Congenital stationary night blindness (CSNB) is a non-progressive retinal disorder that shows genetic and clinical heterogeneity. CSNB is inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait and shows a good genotype-phenotype correlation. Clinically, CSNB is classified as the Riggs type and the Schubert-Bornschein type. The latter form is further sub-classified into complete and incomplete forms based on specific waveforms on the electroretinogram (ERG). There are no molecular genetic data for CSNB in the Indian population. Therefore, we present for the first time molecular profiling of eight families with complete CSNB (cCSNB).METHODS:The index patients and their other affected family members were comprehensively evaluated for the phenotype, including complete ophthalmic evaluation, ERG, fundus autofluorescence, optical coherence tomography, and color vision test. The known gene defects for cCSNB, LRIT3, TRPM1, GRM6, GPR179, and NYX, were screened by PCR direct sequencing. Bioinformatic analyses were performed using SIFT and PolyPhen for the identified missense mutations.RESULTS:All eight affected index patients and affected family members were identified as having cCSNB based on their ERG waveforms. Mutations in the TRPM1 gene were identified in six index patients. The two remaining index patients each carried a GPR179 and GRM6 mutation. Seven of the patients revealed homozygous mutations, while one patient showed a compound heterozygous mutation. Six of the eight mutations identified are novel.CONCLUSIONS:This is the first report on molecular profiling of candidate genes in CSNB in an Indian cohort. As shown for other cohorts, TRPM1 seems to be a major gene defect in patients with cCSNB in India
    corecore