25 research outputs found

    The influence of detachment strength on the evolving deformational energy budget of physical accretionary prisms

    Get PDF
    Tracking the evolution of the deformational energy budget within accretionary systems provides insight into the driving mechanisms that control fault development. To quantify the impact of these mechanisms on overall system efficiency, we estimate energy budget components as the first thrust fault pair develops in dry-sand accretion experiments. We track energy budget components in experiments that include and exclude a basal layer of glass beads in order to investigate the influence of detachment strength on work partitioning. We use the measurements of normal force exerted on the backwall to estimate external work, and measurements of strain observed on the sides of the sand packs to estimate the internal work, frictional work and work against gravity done within increments of each experiment. Thrust fault development reduces the incremental external work and incremental internal work, and increases the incremental frictional work and incremental gravitational work. The faults that develop within higher-friction detachment experiments produce greater frictional work than the faults in experiments with glass bead detachments because the slip distribution along the detachments remains the same, while the effective friction coefficient of the detachment differs between the experiments. The imbalance of the cumulative work budget suggests that additional deformational processes that are not fully captured in our measurements of the energy budget, such as acoustic energy, consume work within the deforming wedge.</p

    Recent advances in residual stress simulation caused by the welding process

    Get PDF
    The purpose of the present paper is to improve the description of residual stress field characteristics generated after welding. The behavior of the material both in the liquidand solid states and during all heating and cooling stages including the solidification in the mushy zone is considered, as well as the surface tension effects in the liquid phase.Simulations are conducted on the finite element software SYSWELD®. A displacement/pressure mixed formulation, based on the linear tetrahedral element of type P1/P1 in the context of elasto-viscoplastic formulation, is used. As regards the structure behaviour,thecontinuous transition between the liquid and the solid phases during the welding is ensured using a mixture law behavior. Numerical simulations were carried out in the context of Lagrangian approach. In this approach the material over the liquidus temperature is modelled as a Newtonian fluid but the flows in the weld pool are not accounted for.Concerning surface tension modelling,the standard method usually adoptedis to apply an externalloadon the freesurface of the weld pool. In the present study, a surfacespherical stress state is directly imposed on the surface in membrane elements incorporated in the meshand representing the interface.Since tetrahedral mesh is easily adapted to complex geometry, a discretization of type P1/P1 is used in the case of welding simulation. It shows the relevance of such tetrahedral finite element for the mechanical analysis of elasto-viscoplastic solid metal.A representative simulation of a laser welding case is processed. The material considered in H. Sallem, E.Feulvarch, H.Amin El Sayed, B.Souloumiac, J-B Leblond, J-M Bergheau this study is the Inconel 600 alloy. Computed residual stress distribution revealsthe ability of such approaches topredictresidual stress states in assessing the integrity of welded components

    Equilibre thermohydrique d'un batiment d'elevage. Consequences sur la geometrie des ouvrants.

    No full text
    International audienc

    Bias due to side wall friction in sand box experiments

    No full text
    International audienc

    Sensor selection for P300 speller brain computer interface

    Get PDF
    International audienceBrain-computer interfaces (BCI) are communication system that use brain activities to control a device. The BCI studied is based on the P300 speller [1]. A new algorithm to select relevant sensors is proposed: it is based on a previous proposed algorithm [2] used to enhance P300 potentials by spatial filters. Data recorded on three subjects were used to evaluate the proposed selection method: it is shown to be efficient and to compare favourably with a reference method [3]
    corecore