24 research outputs found
Resolving Decades of Periodic Spirals from the Wolf–Rayet Dust Factory WR 112
WR 112 is a dust-forming carbon-rich Wolf–Rayet (WC) binary with a dusty circumstellar nebula that exhibits a complex asymmetric morphology, which traces the orbital motion and dust formation in the colliding winds of the central binary. Unraveling the complicated circumstellar dust emission around WR 112 therefore provides an opportunity to understand the dust formation process in colliding-wind WC binaries. In this work, we present a multi-epoch analysis of the circumstellar dust around WR 112 using seven high spatial resolution (FWHM ~ 0farcs3–0farcs4) N-band (λ ~ 12 μm) imaging observations spanning almost 20 yr and that includes images obtained from Subaru/COMICS in 2019 October. In contrast to previous interpretations of a face-on spiral morphology, we observe clear evidence of proper motion of the circumstellar dust around WR 112 consistent with a nearly edge-on spiral with a θ_s = 55° half-opening angle and a ~20 yr period. The revised near edge-on geometry of WR 112 reconciles previous observations of highly variable nonthermal radio emission that was inconsistent with a face-on geometry. We estimate a revised distance to WR 112 of d = 3.39_(-0.84)^(+0.89) kpc based on the observed dust expansion rate and a spectroscopically derived WC terminal wind velocity of v_∞ = 1230 ± 260 km s⁻¹. With the newly derived WR 112 parameters, we fit optically thin dust spectral energy distribution models and determine a dust production rate of Ṁ_d = 2.7_(-1.3)^(+1.0) x 10⁻⁶ M_⊙ yr⁻¹, which demonstrates that WR 112 is one of the most prolific dust-making WC systems known
Resolving Decades of Periodic Spirals from the Wolf-Rayet Dust Factory WR 112
WR 112 is a dust-forming carbon-rich Wolf-Rayet (WC) binary with a dusty
circumstellar nebula that exhibits a complex asymmetric morphology, which
traces the orbital motion and dust formation in the colliding winds of the
central binary. Unraveling the complicated circumstellar dust emission around
WR 112 therefore provides an opportunity to understand the dust formation
process in colliding-wind WC binaries. In this work, we present a multi-epoch
analysis of the circumstellar dust around WR 112 using seven high spatial
resolution (FWHM ) N-band ( m) imaging
observations spanning almost 20 years and includes newly obtained images from
Subaru/COMICS in Oct 2019. In contrast to previous interpretations of a face-on
spiral morphology, we observe clear evidence of proper motion of the
circumstellar dust around WR 112 consistent with a nearly edge-on spiral with a
half-opening angle and a -yr period. The revised
near edge-on geometry of WR 112 reconciles previous observations of highly
variable non-thermal radio emission that was inconsistent with a face-on
geometry. We estimate a revised distance to WR 112 of kpc based on the observed dust expansion rate and a
spectroscopically derived WC terminal wind velocity of
km s. With the newly derived WR 112 parameters we fit optically-thin
dust spectral energy distribution models and determine a dust production rate
of M yr, which
demonstrates that WR 112 is one of the most prolific dust-making WC systems
known.Comment: 17 pages, 9 figures, 1 animated gif, accepted for publication in Ap
A First Look with JWST Aperture Masking Interferometry: Resolving Circumstellar Dust around the Wolf-Rayet Binary WR 137 beyond the Rayleigh Limit
We present infrared aperture-masking interferometry (AMI) observations of newly formed dust from the colliding winds of the massive binary Wolf-Rayet system WR 137 with JWST using the Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS AMI observations of WR 137 and a point-spread function calibrator star, HD 228337, were taken using the F380M and F480M filters in 2022 July and August as part of the Director’s Discretionary Early Release Science program #1349. Interferometric observables (squared visibilities and closure phases) from the WR 137 “interferogram” were extracted and calibrated using three independent software tools: ImPlaneIA, AMICAL, and SAMpip. The analysis of the calibrated observables yielded consistent values except for slightly discrepant closure phases measured by ImPlaneIA. Based on all three sets of calibrated observables, images were reconstructed using three independent software tools: BSMEM, IRBis, and SQUEEZE. All reconstructed image combinations generated consistent images in both F380M and F480M filters. The reconstructed images of WR 137 reveal a bright central core with a ∼300 mas linear filament extending to the northwest. A geometric colliding-wind model with dust production constrained to the orbital plane of the binary system and enhanced as the system approaches periapsis provided a general agreement with the interferometric observables and reconstructed images. Based on a colliding-wind dust condensation analysis, we suggest that dust formation within the orbital plane of WR 137 is induced by enhanced equatorial mass loss from the rapidly rotating O9 companion star, whose axis of rotation is aligned with that of the orbit
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope -- IV. Aperture Masking Interferometry
The James Webb Space Telescope's Near Infrared Imager and Slitless
Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first
such interferometer in space, operating at 3-5 \micron~wavelengths, and a
bright limit of magnitudes in W2. We describe the NIRISS Aperture
Masking Interferometry (AMI) mode to help potential observers understand its
underlying principles, present some sample science cases, explain its
operational observing strategies, indicate how AMI proposals can be developed
with data simulations, and how AMI data can be analyzed. We also present key
results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI)
technique benefits from AMI operational strategies, we also cover NIRISS KPI
methods and analysis techniques, including a new user-friendly KPI pipeline.
The NIRISS KPI bright limit is W2 magnitudes. AMI (and KPI) achieve
an inner working angle of mas that is well inside the mas
NIRCam inner working angle for its circular occulter coronagraphs at comparable
wavelengths.Comment: 30 pages, 10 figure
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p
Étude des nébuleuses spirales de poussière autour des étoiles Wolf-Rayet
Massive stars are one of the major contributors to the enrichment of galaxies in heavy elements and interstellar dust. The last stage of their evolution is represented by the Wolf-Rayet phase (WR). WR stars generate a dense radiative stellar wind, which can interact with the wind from a close companion and cause a spiral dust environment called pinwheel nebula. The orders of magnitude associated with this kind of object are spectacular: with a dust formation rate equivalent to the mass of the planet Mars produced each year, WR stars compete with the historical dust producers, like the stars of the asymptotic giant branch (AGB) or the supernovae (SN). Dusty WR stars could thus answer a well-known problem: where does the dust observed in galaxies come from? This thesis aims at enriching our knowledge about this problem using all aspects of the scientific chain: from observation to data analysis by using different levels of sophistication in numerical modelling (analytical, radiative transfer and hydrodynamics). The first aspect explored by this thesis concerns the modelling of spiral dust nebulae. I first developed an analytical model for the spiral to constrain the geometrical aspects of the spiral, including a number of physical hypothesis like the dust sublimation radius and different types of internal structure. The next step consisted to include the radiative transfer in the geometrical model in order to link the intensity distribution of the object (the image) to its density distribution. This 3-D model of spiral allow to study the opacity and shadowing effects related to the dust mass considered. Similarly, I developed a 3-D axisymmetric radiative transfer model to mimic the spiral into a series of concentric rings. This model aims to reproduce the intensity distribution of a spiral at a given azimuth and allows a direct comparison with the radial intensity profiles derived from observations. Finally, we implemented a 3-D hydrodynamic model of a wind-wind interacting binary to get a realistic idea of the physical conditions in places around the dust nucleation zone. The second aspect addressed by this thesis focuses to the study of the prototype of the pinwheel nebula, called WR104. Such object is an ideal laboratory to study the problem of dust nucleation around massive stars. I explored all spatial scales of WR 104: From the large scale with VLT/VISIR to study the link with the interstellar medium, to the internal regions with VLTI/AMBER to probe the dust nucleation zone, including intermediate angular resolution to study the pinwheel structure with extreme adaptive optics instrument VLT/SPHERE. The third and last aspect deals with the second generation of the instrument installed at the European Very Large Telescope Interferometer (VLTI): MATISSE. It is the first instrument operating simultaneously in the L, M and N bands by recombining the light coming from four telescopes. MATISSE was developed to study different scientific cases: protoplanetary disks, the circumstellar environments and the active galactic nuclei. To prepare the first observation programs, I developed an automated tool, called PREVIS, to determine the observability of objects according to their magnitude and celestial coordinate. In the context of spiral nebulae, I explored the image reconstruction capabilities of the instrument by testing different aspects: geometric (size, inclination, opening angle, etc.) and observational (coverage (u-v), sampling). The unprecedented spatial resolution of MATISSE of 3 mas at 3.5 µm will allow to study these objects in a unique way, resolving for the first time the thickness of the spiral arm, its internal structure or the exact position of the sublimation radius.Les étoiles massives représentent un des principaux contributeurs à l'enrichissement des galaxies en éléments lourds et en poussière interstellaire. L’ultime étape de leur évolution est représentée par le stade Wolf-Rayet (WR). Les étoiles WR présentent la particularité de générer un vent stellaire radiatif dense, qui peut interagir avec celui d’un compagnon proche, donnant naissance à un environnement de poussière en forme de spirale. Les ordres de grandeur associés à ce type d’objet sont spectaculaires : avec un taux de formation de poussière équivalent à la masse de la planète Mars produite chaque année, elles rivalisent avec les producteurs historiques de la poussière que sont les étoiles de la branche asymptotique des géantes (AGB) ou les supernovæ (SN). Les étoiles WR à poussière pourraient ainsi répondre à une problématique bien connue : d’où vient la poussière observée dans les galaxies ? Le présent travail de thèse vise donc à enrichir nos connaissances sur ce problème à travers tous les aspects de la chaîne scientifique : de l’observation à l’analyse de données en employant différents niveaux de sophistication en modélisation numérique (analytique, transfert radiatif et hydrodynamique). Le premier aspect exploré par cette thèse concerne la modélisation des nébuleuses spirales de poussières. J’ai d’abord développé un modèle analytique permettant de contraindre les aspects géométriques des spirales. Ce dernier inclut différentes hypothèses physiques comme la prise en compte d’un rayon de sublimation, de différents types de structure interne, etc. J’ai ensuite inclut le transfert de rayonnement au modèle géométrique afin de relier la distribution d’intensité de l’objet (l’image) à sa distribution en densité. Ce modèle 3-D de spirale de poussière permet d’étudier les effets d’opacité et d’ombrage liés à la masse ou au type de poussière considérée. J’ai également développé un modèle 3-D axisymétrique en transfert de rayonnement afin d’assimiler la spirale à une suite d’anneaux concentriques. Il vise à reproduire la distribution d’intensité d’une spirale à un azimut donné et permet une comparaison directe aux profils radiaux d’intensité issus d’observations. Enfin, nous avons mis en place un modèle hydrodynamique 3-D de binaire à interaction de vent, afin d’avoir une idée réaliste des conditions physiques en place au niveau de la zone de nucléation des poussières. Le second aspect abordé par cette thèse se concentre sur l’étude du prototype des nébuleuses spirales de poussière, nommé WR 104. J’explore ici toutes les échelles spatiales de l’objet : des grandes échelles avec l’imageur VLT/VISIR afin de faire le lien avec milieu interstellaire, aux régions les plus internes avec l’instrument VLTI/AMBER pour sonder la zone de nucléation de poussière, en passant par l’instrument d’optique adaptative extrême, VLT/SPHERE, afin d’étudier les premiers tours de la spirale. Le troisième et dernier aspect concerne l’instrument de seconde génération à équiper l’interféromètre européen (VLTI) : MATISSE. Il est le tout premier instrument à opérer en simultané dans les bandes L, M et N en recombinant la lumière issue de quatre télescopes. MATISSE a été conçu pour étudier une variété de cas scientifiques : des disques protoplanétaires aux noyaux actifs de galaxie, en passant par les environnements circumstellaires. Afin de préparer les premiers programmes observations, j’ai développé un outil automatisé, nommé PREVIS, visant à prédire l’observabilité des objets. Dans le cadre des nébuleuses spirales, j’ai pu explorer les capacités de l’instrument en reconstruction d’image en testant différents aspects (tailles, inclinaison, couverture (u-v), etc.). Avec un pouvoir de résolution spatiale de 3 mas à 3,5 µm, MATISSE permettra d’étudier ces objets de façon unique, en résolvant pour la première fois l’épaisseur des bras spiraux, leurs structures internes ou la position exacte du bord de sublimation