163 research outputs found

    Genomic organization, expression analysis, and chromosomal localization of the mouse PEX3 gene encoding a peroxisomal assembly protein

    Get PDF
    The peroxin Pex3p has been identified as an integral peroxisomal membrane protein in yeast where pex3 mutants lack peroxisomal remnant structures. Although not proven in higher organisms, a role of this gene in the early peroxisome biogenesis is suggested, We report here the cDNA cloning and the genomic structure of the mouse PEX3 gene. The 2 kb cDNA encodes a polypeptide of 372 amino acids (42 kDa). The gene spans a region of 30 kb, contains 12 exons and 11 introns and is located on band A of chromosome 10, The putative promoter region exhibits characteristic housekeeping features. PEX3 expression was identified in all tissues analyzed, with the strongest signals in liver and in testis, and could not be induced by fenofibrate. The data presented may be useful for the generation of a mouse model defective in PEX3 in order to clarify the yet unknown functional impact of disturbances in early peroxisomal membrane assembly

    Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis

    Get PDF
    Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the beta subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in pro-vascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in a tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.Joanna Rojek, Matthew R Tucker, Sara C Pinto, Michał Rychłowski, Małgorzata Lichocka, Hana Soukupova ... et al

    Intraspecific Variation in Pinus Pinaster PSII Photochemical Efficiency in Response to Winter Stress and Freezing Temperatures

    Get PDF
    As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT50, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site

    BRCA1 and BRCA2 5′ noncoding region variants identified in breast cancer patients alter promoter activity and protein binding

    Get PDF
    © 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc. The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5′ noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency \u3c 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C\u3eT and PAX5 binding to BRCA2:c.-296C\u3eT. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC

    Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families

    Get PDF
    PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed

    Ovarian Cancer Pathology Characteristics as Predictors of Variant Pathogenicity in BRCA1 and BRCA2

    Get PDF
    BACKGROUND: The distribution of ovarian tumour characteristics differs between germline BRCA1 and BRCA2 pathogenic variant carriers and non-carriers. In this study, we assessed the utility of ovarian tumour characteristics as predictors of BRCA1 and BRCA2 variant pathogenicity, for application using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) variant classification system. METHODS: Data for 10,373 ovarian cancer cases, including carriers and non-carriers of BRCA1 or BRCA2 pathogenic variants, were collected from unpublished international cohorts and consortia and published studies. Likelihood ratios (LR) were calculated for the association of ovarian cancer histology and other characteristics, with BRCA1 and BRCA2 variant pathogenicity. Estimates were aligned to ACMG/AMP code strengths (supporting, moderate, strong). RESULTS: No histological subtype provided informative ACMG/AMP evidence in favour of BRCA1 and BRCA2 variant pathogenicity. Evidence against variant pathogenicity was estimated for the mucinous and clear cell histologies (supporting) and borderline cases (moderate). Refined associations are provided according to tumour grade, invasion and age at diagnosis. CONCLUSIONS: We provide detailed estimates for predicting BRCA1 and BRCA2 variant pathogenicity based on ovarian tumour characteristics. This evidence can be combined with other variant information under the ACMG/AMP classification system, to improve classification and carrier clinical management

    ENIGMA CHEK2gether Project: A Comprehensive Study Identifies Functionally Impaired CHEK2 Germline Missense Variants Associated with Increased Breast Cancer Risk

    Get PDF
    PURPOSE: Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN: We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS: A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS: We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers
    corecore