7 research outputs found

    NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

    Get PDF
    Neutrinoless double beta decay (0ÎœÎČÎČ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0ÎœÎČÎČ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0ÎœÎČÎČ Nuclear Matrix Elements. In DCE reactions and ÎČÎČ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ÎČÎČ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0ÎœÎČÎČ

    New results from the NUMEN project

    Get PDF
    NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0ÎœÎČÎČ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (18O,18Ne) and (20Ne,20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0ÎœÎČÎČ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beams and the MAGNEX magnetic spectrometer at INFN Laboratori Nazionali del Sud in Catania (Italy). The measured cross sections are extremely low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to increase the experimental yield of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest. peerReviewe

    Upgrade of the MAGNEX spectrometer toward the high-intensity phase of NUMEN

    Get PDF
    The NUMEN experimental activity with accelerated beams is performed at INFN–Laboratori Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron and the MAGNEX magnetic spectrometer. The scientific motivation of NUMEN is to extract experiment-driven information on the nuclear matrix elements entering in the expression of the 0ÎœÎČÎČ decay half-life. The reaction cross sections involved, especially for the double charge exchange process, are very low, thus limiting the present exploration to a few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield by more than two orders of magnitude. To this purpose, frontier technologies are being developed for the accelerator and the detection systems. An updated description of the choices derived from the recent R&D activity on the target system and MAGNEX focal plane detector is given

    Initial State Interaction for the 20^{20}Ne + 130^{130}Te and 18^{18}O + 116^{116}Sn Systems at 15.3 AMeV from Elastic and Inelastic Scattering Measurements

    Get PDF
    International audienceDouble charge exchange (DCE) reactions could provide experimentally driven information about nuclear matrix elements of interest in the context of neutrinoless double-ÎČ decay. To achieve this goal, a detailed description of the reaction mechanism is mandatory. This requires the full characterization of the initial and final-state interactions, which are poorly known for many of the projectile-target systems involved in future DCE studies. Among these, we intend to study the 20Ne + 130Te and 18O + 116Sn systems at 15.3 AMeV, which are particularly relevant due to their connection with the 130Te→130Xe and 116Cd→116Sn double-ÎČ decays. We measure the elastic and inelastic scattering cross-section angular distributions and compare them with theoretical calculations performed in the optical model, one-step distorted wave Born approximation, and coupled-channel approaches using the SĂŁo Paulo double-folding optical potential. A good description of the experimental data in the whole explored range of transferred momenta is obtained provided that couplings with the 21+ states of the projectile and target are explicitly included within the coupled-channel approach. These results are relevant also in the analysis of other quasi-elastic reaction channels in these systems, in which the same couplings should be included

    The multichannel experimental and theoretical study of the 12^{12}C(18^{18}O,18^{18}F)12^{12}B single charge exchange reaction mechanism

    No full text
    International audienceThe study of a network of nuclear reactions populated in the 18O + 12C collision is the main topic of the present paper. It was performed to test nuclear structure and reaction theories in describing the full reaction mechanism occurring in the (18O, 18F) single charge exchange nuclear reaction. From the experimental side, an 18O beam was produced at 275 MeV incident energy by the K800 superconducting cyclotron and the MAGNEX magnetic spectrometer was used at the Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare to momentum analyse the ejectiles produced in the nuclear reactions within the same experimental setup. From the theoretical side, the proposed approach consists of analysing the whole network of nuclear reactions in the framework of a unique comprehensive and coherent theoretical calculation. This holistic approach, applied both to the experimental and theoretical analysis, is the main feature and novelty of the work presented here

    The NUMEN Heavy Ion Multidetector for a Complementary Approach to the Neutrinoless Double Beta Decay

    No full text
    International audienceNeutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described

    The NUMEN Technical Design Report

    No full text
    International audienceNUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross-section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer at the INFN-LNS laboratory. However, the tiny values of DCE cross-sections and the resolution requirements demand beam intensities much higher than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities promoted by the POTLNSa project in this perspective is intimately connected to the NUMEN project. This paper describes the solutions proposed as a result of the R&D activity performed during the recent years. The goal is to develop suitable technologies allowing for the measurements of DCE cross-section under extremely high beam intensities. PIR01_00005 — potenziamento dell’infrastruttura di ricerca Laboratori Nazionali del Sud per la produzione di fasci di ioni ad alta intensitá
    corecore