5 research outputs found

    Genomic Research Data Generation, Analysis and Sharing – Challenges in the African Setting

    Get PDF
    International audienceGenomics is the study of the genetic material that constitutes the genomes of organisms. This genetic material can be sequenced and it provides a powerful tool for the study of human, plant and animal evolutionary history and diseases. Genomics research is becoming increasingly commonplace due to significant advances in and reducing costs of technologies such as sequencing. This has led to new challenges including increasing cost and complexity of data. There is, therefore, an increasing need for computing infrastructure and skills to manage, store, analyze and interpret the data. In addition, there is a significant cost associated with recruitment of participants and collection and processing of biological samples, particularly for large human genetics studies on specific diseases. As a result, researchers are often reluctant to share the data due to the effort and associated cost. In Africa, where researchers are most commonly at the study recruitment, determination of phenotypes and collection of biological samples end of the genomic research spectrum, rather than the generation of genomic data, data sharing without adequate safeguards for the interests of the primary data generators is a concern. There are substantial ethical considerations in the sharing of human genomics data. The broad consent for data sharing preferred by genomics researchers and funders does not necessarily align with the expectations of researchers, research participants, legal authorities and bioethicists. In Africa, this is complicated by concerns about comprehension of genomics research studies, quality of research ethics reviews and understanding of the implications of broad consent, secondary analyses of shared data, return of results and incidental findings. Additional challenges with genomics research in Africa include the inability to transfer, store, process and analyze large-scale genomics data on the continent, because this requires highly specialized skills and expensive computing infrastructure which are often unavailable. Recently initiatives such as H3Africa and H3ABioNet which aim to build capacity for large-scale genomics projects in Africa have emerged. Here we describe such initiatives, including the challenges faced in the generation, analysis and sharing of genomic data and how these challenges are being overcome

    Development of Bioinformatics Infrastructure for Genomics Research:

    Get PDF
    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community

    Genomic Characteristics of Invasive Streptococcus pneumoniae Serotype 1 in New Caledonia Prior to the Introduction of PCV13

    No full text
    Streptococcus pneumoniae serotype 1 is a common cause of global invasive pneumococcal disease. In New Caledonia, serotype 1 is the most prevalent serotype and led to two major outbreaks reported in the 2000s. The pneumococcal conjugate vaccine 13 (PCV13) was introduced into the vaccination routine, intending to prevent the expansion of serotype 1 in New Caledonia. Aiming to provide a baseline for monitoring the post-PCV13 changes, we performed a whole-genome sequence analysis on 67 serotype 1 isolates collected prior to the PCV13 introduction. To highlight the S. pneumoniae serotype 1 population structure, we performed a multilocus sequence typing (MLST) analysis revealing that NC serotype 1 consisted of 2 sequence types: ST3717 and the highly dominant ST306. Both sequence types harbored the same resistance genes to beta-lactams, macrolide, streptogramin B, fluoroquinolone, and lincosamide antibiotics. We have also identified 36 virulence genes that were ubiquitous to all the isolates. Among these virulence genes, the pneumolysin sequence presented an allelic profile associated with disease outbreaks and reduced hemolytic activity. Moreover, recombination hotspots were identified in 4 virulence genes and more notably in the cps locus ( cps2L), potentially leading to capsular switching, a major mechanism of the emergence of nonvaccine types. In summary, this study represents the first overview of the genomic characteristics of S. pneumoniae serotype 1 in New Caledonia prior to the introduction of PCV13. This preliminary description represents a baseline to assess the impact of PCV13 on serotype 1 population structure and genomic diversity. </jats:p

    Epidemiological and Phylogeographic Study of Equid Herpesviruses in Tunisia

    No full text
    Equid herpesvirus (EHV) is a contagious viral disease affecting horses, causing illness characterized by respiratory symptoms, abortion and neurological disorders. It is common worldwide and causes severe economic losses to the equine industry. The present study was aimed at investigating the incidence of EHVs, the genetic characterization of Tunisian isolates and a spatiotemporal study, using 298 collected samples from diseased and clinically healthy horses. The global incidence of EHV infection was found to be about 71.81%. EHV2 and EHV5 were detected in 146 (48.99%) and 159 (53.35%) sampled horses, respectively. EHV1 was detected in 11 samples (3.69%); EHV4 was not detected. Co-infections with EHV1-EHV2, EHV1-EHV5 and EHV2-EHV5 were observed in 0.33%, 1.34% and 31.54% of tested horses, respectively. Phylogenetic analyses showed that gB of EHV2 and EHV5 displays high genetic diversity with a nucleotide sequence identity ranging from 88 to 100% for EHV2 and 97.5 to 100% for EHV5. Phylogeography suggested Iceland and USA as the most likely countries of origin of the Tunisian EHV2 and EHV5 isolates. These viruses detected in Tunisia seemed to be introduced in the 2000s. This first epidemiological and phylogeographic study is important for better knowledge of the evolution of equid herpesvirus infections in Tunisia
    corecore