106 research outputs found

    Performance assessment and modeling of an SWRO pilot plant with an energy recovery device under variable operating conditions

    Get PDF
    This research was co-funded by the ERDF and the ACLIEMAC Project (MAC2/3.5b/380) of the INTERREG V-A MAC 2014-2020 program.Reverse osmosis (RO) is one of the most widespread desalination technologies in use today due to its good performance and reliability. Given that it is an energy intensive technology, using variable renewable energy sources (VRES) to power RO systems is an interesting option. Work with the RO system under variable operating conditions is one of the strategies that can be employed to take advantage of all the energy that is available at any given time from an off-grid renewable system. However, this will entail additional challenges in terms of, among other factors, plant maintenance and permeate production rate and quality. In grid-connected seawater RO (SWRO) desalination plants, energy recovery devices (ERD) are commonly used to increase energy efficiency performance. In these cases, the ERD usually operates under constant operating conditions. This work aims to assess the performance of an SWRO system with an ERD under widely variable operating conditions. The SWRO system has six membrane elements in pressure vessels. The ERD is a Pelton turbine connected to a generator to measure the energy produced by the turbine. An artificial neural network (ANN) based model was developed to estimate the performance of the SWRO-ERD system under variable operating conditions. According to the results, power savings of between 2.9 and 6.08 kW can be achieved for a wide range of operating conditions, allowing an increase in the produced permeate flux (Qp). The proposed ANN-based model is able to estimate Qp and permeate electrical conductivity with error intervals of 1.56 x 10-6 -8.49 x 10-2 m3 h-1 and 8.33 x 10-5 -31.06 mu S cm-1, respectively. The experimental data and the developed model could help to obtain a better performance pre-diction of VRES-powered SWRO systems that are operating under variable operating conditions and with ERDs.Depto. de Estructura de la Materia, FĂ­sica TĂ©rmica y ElectrĂłnicaFac. de Ciencias FĂ­sicasTRUEEuropean Regional Development Fund (ERDF)ACLIEMAC Project of the INTERREG V-A MAC 2014-2020 programpu

    Modelling mass transport through a porous partition: Effect of pore size distribution.

    Get PDF
    Direct contact membrane distillation process has been studied using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their nonwettability, pore size distribution and porosity. The mean pore sizes and pore size distributions were obtained by means of wet/ dry flow method. The mean pore size and the effective porosity of the membranes were also determined from the gas permeation test. A theoretical model that considers the pore size distribution together with the gas transport mechanisms through the membrane pores was developed for this process. The contribution of each mass transport mechanism was analyzed. It was found that both membranes have pore size distributions in the Knudsen region and in the transition between Knudsen and ordinary diffusion region. The transition region was the major contribution to mass transport. The predicted water vapor permeability of the membranes were compared with the experimental ones. The effect of considering pore size distribution instead of mean pore size to predict the water vapor permeability of the membranes was investigated

    Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses

    Get PDF
    Chitosan powder irradiated by electron beam at different doses, up to 250 kGy, was used to prepare membranes for drug release applications. The irradiation effect on the molecular weight of powder chitosan, the characteristics of the prepared membranes, and their transport of sulfamerazine sodium salt (SULF) were investigated. The effect of the addition of glutaraldehyde (GLA) as a crosslinking agent in the chitosan solution used for the preparation of the membranes was also studied. A decrease in the chitosan molecular weight with the increase in the irradiation dose was observed, while the membranes prepared with the irradiated chitosan at higher dose exhibited lower swelling. However, an opposite behavior was detected when the membranes were prepared with GLA-crosslinked chitosan. A GLA crosslinking agent reduced the crystallinity of the chitosan membranes and the swelling, whereas the water contact angle and SULF transport increased with the increase in the irradiation dose

    Improved antifouling performance of polyester thin film nanofiber composite membranes prepared by interfacial polymerization

    Get PDF
    Membrane technology is becoming increasingly important to solve the global water scarcity problem because it allows an efficient, economic and environmental friendly treatment of water. However, the long-term use of a filtration membrane is limited by fouling, which reduces water production rates and increases energy consumption. In this paper, polyester thin film nanofiber composite (PE TFNC) membranes with improved antifouling performance were developed for wastewater treatment. The membranes were prepared by interfacial polymerization (IP) of bisphenol A (BPA) and trimesoyl chloride (TMC) on the surface of polysulfone electrospun nanofiber membranes (PSU ENMs). The antifouling properties of the membranes were improved by varying the polymerization reaction time. All membranes were characterized with scanning electron microscope (SEM), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), porometry and zeta potential measurements. Humic acid (HA) permeation tests were carried out to relate their physicochemical properties to their filtration and antifouling performance. The best PE TFNC membrane (polymerized for 15 min) was compared with polyester based thin film composite membranes prepared on other supports and polyamide based thin film composite membranes formed by IP of piperazine (PIP) and TMC in the presence of trimethylamine (TEA). The best PE TFNC membrane exhibited a permeability of 213.0 L/m(2)h.bar, two orders of magnitude greater than previously reported PE thin film composite membranes, a HA separation factor of 72.5% and an irreversible fouling factor of 10.2%

    Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Get PDF
    Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD), osmotic distillation (OD) and osmotic membrane distillation (OMD) use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED), membrane capacitive deionization (MCD), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), microfiltration (MF), etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling), fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application

    Electrospun Nanostructured Membrane Engineering Using Reverse Osmosis Recycled Modules: Membrane Distillation Application

    Get PDF
    As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m(-2) h(-1), respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane

    Experimental and theoretical studies on the formation of pure beta-phase polymorphs during fabrication of polyvinylidene fluoride membranes by cyclic carbonate solvents

    Get PDF
    The use of highly toxic solvents presents significant risks to both the environment and human health. Therefore, the adoption of green solvents will be crucial for achieving sustainable membrane production. This work reports the use of inexpensive environmentally friendly biobased and biodegradable cyclic carbonate solvents, namely ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), to fabricate polyvinylidene fluoride (PVDF) membranes. The solvent dependence of the phase inversion mechanisms, morphology, crystalline structures, and polymorphism of the prepared PVDF membranes were investigated. Polymorph analysis revealed that membrane fabrication in EC or PC yielded exclusively the beta-phase product, whereas PVDF membrane fabrication in BC yielded a mixture of alpha and beta phase material. The mechanism of beta-phase formation was investigated using molecular dynamics simulation and shown to depend on the extent of hydrogen bonding at the polymer-solvent interface. The PVDF membrane formed in EC exhibited the highest porosity and pure water permeability, and was therefore tested in direct contact membrane distillation (DCMD), exhibiting promising results in terms of permeate flux and salt rejection. These results suggest that large-scale production of piezoelectric PVDF membranes using green solvents should be practically feasible

    Magnetized Activated Carbon Synthesized from Pomegranate Husk for Persulfate Activation and Degradation of 4-Chlorophenol from Wastewater

    Get PDF
    The compound 4-chlorophenol (4-CP) is known to be a highly toxic compound having harmful effects on human health and the environment. To date, the removal of 4-CP by advanced oxidation processes (AOPs) has attracted tremendous attentions. The persulfate-based AOPs show higher oxidation, better selectivity, wider pH range, and no secondary pollution compared to the traditional Fenton-based AOPs. Carbon materials with low cost and chemical stability are useful for the activation of persulfate (PS) to produce reactive species. Herein, we magnetized activated carbon synthesized from pomegranate husk (MPHAC). By using 4-CP as a model organic pollutant, tests of the activation of PS via MPHAC for the removal of 4-CP were performed. Batch processes were carried out to study the influence of different parameters (initial solution pH, catalyst dose, PS dose, and initial 4-CP concentration) on the adsorption of 4-CP on PHAC with ferric oxide (Fe3O4-PHAC). The results show that under the obtained optimal conditions (MPHAC dose: 1250 mg/L, PS dose: 350 mg/L, solution pH 5, an initial 4-CP concentration of 100 mg/L, and a contact time of 60 min), a 4-CP removal factor of 99.5% was reached by the developed MPHAC/PS system. In addition, it was found that reusing MPHAC in five successive cycles is feasible because the catalyst in the last cycle kept exhibiting a high potential for 4-CP absorption, indicating the economically viable procedure. Therefore, this study provides a comprehensive understanding on the degradation of 4-CP by the magnetized activated carbon persulfate system

    Cyclic olefin polymer as a novel membrane material for membrane distillation applications

    Get PDF
    A first attempt was made to prepare cyclic olefin polymer/copolymer (COP/COC) flat-sheet porous membranes by the well-known non-solvent induced phase separation method. In this study, two solvents (chloroform and 1,2,4-trichlorobenzene), different additives (polyvinylpyrrolidone, PVP, polyethylene glycol, PEG400, polyethylene oxide, PEO, and Sorbitan monooleate, Span 80) and coagulants (acetone and 70/30 wt% acetone/water mixture) were employed. The prepared membranes were characterized in terms of the thickness (70-85 mu m), porosity (-50-80%), liquid entry pressure (1.16-4.55 bar), water contact angle (similar to 86 degrees - 111 degrees), mean pore size (158-265 nm), mechanical properties (tensile strength: 0.74-5.51 MPa, elongation at break: 3.34%-7.94% and Young's modulus: 29-237 MPa), morphological and topographical characteristics. Short-term direct contact membrane distillation (DCMD) tests showed maximum permeate fluxes of 20 kg m(-2) h(-1) and 15 kg m(-2) h(-1) when using as feed distilled water and 30 g/L sodium chloride aqueous solution, respectively, with a high salt separation factor (99.99%). Long-term DCMD tests of some selected membranes carried out during 24-50 h showed that the membranes prepared with PEG additive exhibited more stable DCMD performance. In general, it was proved that COP can be successfully used as a novel polymer candidate in membrane distillation (MD) applications
    • …
    corecore