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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Experimental data of a full-scale SWRO 
desalination plant with ERD 

• Performance assessment of SWRO desa
lination plant with ERD under variable 
operation 

• ANN based model for predicting Qp and 
Condp was developed. 

• SEC varied from 3.21 to 4.47 kWh m− 3 

for a wide range of operation of SWRO 
plant.  
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A B S T R A C T   

Reverse osmosis (RO) is one of the most widespread desalination technologies in use today due to its good 
performance and reliability. Given that it is an energy intensive technology, using variable renewable energy 
sources (VRES) to power RO systems is an interesting option. Work with the RO system under variable operating 
conditions is one of the strategies that can be employed to take advantage of all the energy that is available at any 
given time from an off-grid renewable system. However, this will entail additional challenges in terms of, among 
other factors, plant maintenance and permeate production rate and quality. In grid-connected seawater RO 
(SWRO) desalination plants, energy recovery devices (ERD) are commonly used to increase energy efficiency 
performance. In these cases, the ERD usually operates under constant operating conditions. This work aims to 
assess the performance of an SWRO system with an ERD under widely variable operating conditions. The SWRO 
system has six membrane elements in pressure vessels. The ERD is a Pelton turbine connected to a generator to 
measure the energy produced by the turbine. An artificial neural network (ANN) based model was developed to 
estimate the performance of the SWRO-ERD system under variable operating conditions. According to the results, 
power savings of between 2.9 and 6.08 kW can be achieved for a wide range of operating conditions, allowing an 
increase in the produced permeate flux (Qp). The proposed ANN-based model is able to estimate Qp and permeate 
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electrical conductivity with error intervals of 1.56 × 10− 6 - 8.49 × 10− 2 m3 h− 1 and 8.33 × 10− 5 - 31.06 μS cm− 1, 
respectively. The experimental data and the developed model could help to obtain a better performance pre
diction of VRES-powered SWRO systems that are operating under variable operating conditions and with ERDs.   

1. Introduction 

Desalination is a key strategy to satisfy water demand in countries 
with high levels of water stress and periodic water shortages [1]. 
Worldwide, desalinated water production is still growing significantly. 
For instance, the desalination projects tendered out in the first six 
months of 2019 showed a capacity of 4 million m3 d− 1. This quantity is 
close to the total of 2015 and 2016 combined [1]. Faced with an ever 
increasing water demand, interest in seawater desalination continues to 
grow. Among the available industrial seawater desalination technolo
gies, the most frequently used is reverse osmosis (RO) because of its 
reliability and lower specific energy consumption (SEC) [2,3]. Despite 
being an efficient process in terms of energy consumption compared to 
other technologies, seawater reverse osmosis (SWRO) remains an energy 
intensive process that has been associated with the emission of green
house gases as well as other environmental impacts [4,5]. The fight 
against climate change is just one of the compelling reasons for the in
terest in using renewable energy sources (RES) for the powering of 
SWRO systems [6,7]. 

Currently, using RES to power SWRO systems is far from simple, and 
its feasibility depends on numerous factors that include accessibility to 
water and energy [1], costs [8,9], regulations [10], etc. The most 
common RES applied to desalination are wind, solar, geothermal and 
tidal/wave [11]. Various configurations of RES-SWRO systems have 
been adopted. Maleki et al. [12] proposed a cost-effective hybrid energy 
system comprising photovoltaic/wind/hydrogen RES to power RO 
desalination plants. Padrón et al. [13] studied a hybrid system which 

was based on photovoltaic modules, different wind turbines supple
mented with battery banks and the possible inclusion of diesel genera
tors if required. The HOMER hybrid optimization model tool was used to 
find the optimal design of this hybrid system. An optimization study to 
manage a photovoltaic/wind/battery/RO-based hybrid system was 
carried out by Peng et al. [14]. The SWRO desalination plants powered 
by RES commonly use the generated electricity, which is intermittent 
and variable over the course of a day. This fluctuation can be compen
sated for by connecting SWRO desalination plants to the power grid, 
allowing their steady-state operation [15]. When this option is not 
possible, in isolated regions, the SWRO desalination plants powered by 
RES are in off-grid systems and their operation is essentially intermittent 
[16]. In some cases, the SWRO-RES systems are equipped with batteries 
for energy storage [17] to extend their operating time. In intermittent 
operation there are two ways to operate SWRO desalination plants, 
under permanent (i.e. constant feed pressure (pf) and flow rate (Qf)) [18] 
or variable operating conditions (variable pf and Qf) [19]. The first op
tion allows the desalination plant to operate under given design condi
tions, but battery use is important as the input power required for the 
operation is usually high. On the other hand, operating an SWRO 
desalination plant under variable operating conditions would allow use 
of lower power inputs, reducing the dependence on batteries. In both 
cases, batteries could provide smoother operating conditions [20]. 
Operating an SWRO system under variable/intermittent conditions is 
complex because of the need to control important factors such as 
permeate production rate, permeate quality in terms of total dissolved 
solids (TDS) and fouling effects on RO performance [21–23]. This 
complication is increased if an energy recovery device (ERD) is installed 

Nomenclature 

Acronyms 
ANN artificial neural network 
ERD energy recovery device 
HL hidden layer 
HPP high pressure pump 
PV pressure vessel 
RES renewable energy sources 
RO reverse osmosis 
SWRO seawater reverse osmosis 
VFD variable frequency drive 
A average water permeability coefficient (m Pa− 1 s− 1) 
B average solute permeability coefficient (m s− 1) 
Cond conductivity (μS cm− 1) 
C concentration (mg L− 1) 
D solute diffusivity (m2 s− 1) 
dh hydraulic diameter of feed channel (m) 
h feed-brine spacer height (m) 
I electric current (A) 
J flux per unit area (m3 m− 2 s− 1) 
k mass transfer coefficient 
MAE mean absolute error 
MAPE mean absolute percentage error (%) 
MSE mean square error 
n number of estimated values 
p pressure (Pa) 
Pin power input to high pressure pump (kW) 

Q flow (m3 h− 1) 
R flux recovery (%) 
Sc Schmidt number 
SDI silt density index 
SEC specific energy consumption (kW h m− 3) 
Sh Sherwood number 
Sm membrane surface (m2) 
TCF temperature correction factor 
TDS total dissolved solids (mg L− 1) 
TMP transmembrane pressure (Pa) 
T temperature (◦C) 
yi,est estimated values 
yi,exp observed values 

Greek letters 
Δp pressure drop (Pa) 
η dynamic viscosity (kg m− 1 s) 
π osmotic pressure (Pa) 
ρ density (kg m− 3) 
ε porosity in feed channel 
nu velocity (m s− 1) 

Subscripts 
b brine 
f feed 
m membrane 
p permeate  
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since the operation of the ERD would also be variable as well as its 
performance. 

Nuez et al. [24] studied the variable operation of an SWRO system 
which was connected to a wind turbine with no energy storage system or 
ERD and found that the applied feed pressures of 39, 49 and 60 bar 
resulted in water flux recovery (R) rates of 19.74, 31.37 and 40 %, 
respectively, with a permeate electrical conductivity between 429 and 
292 μS cm− 1, and with the lower values at pressures close to 60 bar. 
Ntavou et al. [25] undertook a performance analysis of a multi-skid 
SWRO unit with variable power input using an ERD based on axial 
piston pumps coupled with axial piston motors. Filmtec™ SW30-4040 
membranes and a model saline feed solution of 37,500 mg L− 1 were 
used. It was observed that the lower the power input (Pin) the higher the 
specific energy consumption (SEC), ranging between around 3.5 and 6 
kWh m− 3 for three different feed temperatures (Tf). Dimitriou et al. [19] 
carried out a validation study of a theoretical model for the prediction of 
SWRO system performance under variable operating conditions. The 
Filmtec™ SW30-4040 membrane was used, as in the previous study, but 
in this case a small-scale SWRO unit was used with a single pressure 
vessel (PV) and Clark pump unit as ERD. The applied pf ranged between 
35 and 45 bar and the obtained TDS of the permeate varied between 200 
and 600 g m− 3. However, the corresponding SEC data were not pro
vided. The same SWRO system with air pressure vessels as energy 
storage device was used by Karavas et al. [26]. In this case, the applied pf 
ranged between 39 and 51 bar, and the obtained permeate electrical 
conductivity varied between 200 and 1000 μS cm− 1, while the SEC 
varied from 6 to 14 kWh m− 3. Calise et al. [27] did an economic eval
uation of SWRO desalination using photovoltaic panels as power source. 
The analysis of the performance of the SWRO system with ERI® (pres
sure exchanger that transfers pressure energy from brine stream to feed 
stream) as ERD employed a simulation that used the Dupont® Water 
Application Value Engine (WAVE) software together with a model that 
the authors of the study proposed. They assumed a constant value of 2.2 
kWh m− 3 for SEC. Considering a product water price of 7 € m− 3, the 
payback period obtained was about 1.3 years. To maximize system 
performance, the authors recommended reducing the range of operating 
pressures that start up the RO system which showed similar results. SEC 
was taken as a constant value of 2.2 kWh m− 3. Monjezi et al. [28] 
proposed an off-grid solar energy system to power an SWRO desalina
tion plant with integrated photovoltaic thermal cooling. They carried 
out simulations of the system with the Reverse Osmosis System Analysis 
(ROSA) software. For the Filmtec SW30–2540 membrane, an R of 40 % 
was obtained for single-stage operation with SEC reduction from 4.27 to 
4.15 kWh m− 3 when using photovoltaic thermal cooling. Delgado- 
Torres et al. [29] undertook a preliminary SWRO study using a hybrid 
(photovoltaic-tidal) system. ROSA was also used for a simulation of the 
SWRO system performance without ERD, considering two SWRO 
membranes: Filmtec™ SW30HRLE– 440i and Filmtec SW30XLE – 440i. 
According to the results obtained with ROSA, SEC was 3.5 kWh m− 3. 
Schallenberg-Rodríguez et al. [30] studied the energy supply from RES 
to an SWRO desalination plant with the ERI® PX pressure exchanger and 
considering intermittent operating conditions. A SEC of 3.84 kWh m− 3 

was considered for sizing the RES facility. There are two main types of 
ERDs, centrifugal and isobaric. Among the centrifugal options, the Pel
ton turbine stands out with a yield of between 85 and 90 % at its nominal 
operating point. Among the isobaric ERDs, the RO Kinetic®, DWEER™, 
ERI® PX and iSave stand out with yields of up to 98 % at their nominal 
operating points. It should be noted that the Pelton turbine is a well 
established and flexible operating device, the RO Kinetic® is not 
commercially available, the DWEER is designed for high flow rates (>
160 m3 h− 1), the iSave is noisy (87 dB), and the performance of the ERI® 
PX varies considerably under variable operating conditions and so 
calibration is needed [31]. Most installed ERDs in RO desalination plants 
work under steady operating conditions, showing a stable performance 
most of the time. With isobaric ERDs and under steady operating con
ditions, the achieved SEC could be in the range 2.5–4.0 kWh m− 3 for full- 

scale SWRO desalination plants [32]. Efforts are still being made to 
develop improved ERDs [33–35], but there is a lack of information 
about the performance of this type of device in full-scale RO desalination 
plants operating under variable operating conditions. In isolated SWRO- 
RES systems under variable operating conditions, it is important to have 
an ERD that does not need any adjustments and allows flexible operation 
without large fluctuations in performance. In general, ERDs are not 
evaluated under variable operating conditions, which could be an 
operational mode of an off-grid SWRO system powered by RES. 

The modeling of RES-SWRO systems is key to estimate their perfor
mance under hypothetical real conditions. The variable operation of 
RES-SWRO systems makes it complex to model these systems using 
standard transport phenomena equations as it is common not to have all 
the devices required to measure every single variable that affects their 
operation. In addition, it is necessary to obtain a lot of information in 
real time from the RO systems that helps to estimate the performance. 
An in-depth understanding of a system is not required with machine 
learning techniques such as artificial neural network (ANN) based 
models, which allow the modeling of complex and nonlinear systems 
[36,37]. The basic idea behind ANN-based models is to use multiple 
layers of interconnected neurons to approximate a non-linear function 
that maps inputs to outputs. During the training process, the weights of 
the connections are updated based on the error between the network's 
predicted outputs and the ground truth outputs, using an optimization 
algorithm such as the stochastic gradient descent. A large number of 
studies have been published involving the use of ANN-based models and 
RO desalination plants [38]. Murthy and Vora [39], who proposed an 
ANN-based model for predicting solute rejection and permeate flow 
(Qp), used as input parameters pf, feedwater concentration (Cf) and Qf. 
The model had two hidden layers (HL) of 10 neurons each. The log- 
sigmoid activation function was used and the Lavenberg-Marquardt al
gorithm for training. Another ANN-based model was developed by 
Libotean et al. [40], with one HL and three neurons to estimate the 
performance in terms of salt passage and Qp of a pilot plant with a two- 
stage RO system. The operating parameters were Tf, pf, Qf and the 
feedwater electrical conductivity (Condf). Khayet et al. [41] proposed 
the use of predictive models based on response surface methodology 
(RSM) and ANNs for estimating solute rejection and Qp. The input pa
rameters were the Cf, Tf, pf and Qf of an RO pilot plant. The ANN-based 
model had two HLs with five and three neurons respectively and one 
output. RSM and ANNs are both used for modeling and prediction in 
various fields. However, RSM is a simpler, faster and more interpretable 
method for modeling and prediction, while ANN is a more powerful and 
flexible method that can handle more complex relationships and larger 
amounts of data. The choice of method depends on the specific re
quirements of the problem and the available data. Garg and Joshi [42] 
also carried out a comparison between RSM and an ANN model. The 
model that was developed aimed to predict the R, SEC and solute 
rejection considering four inputs, pH, Cf, pf and Tf. The ANN-based 
model had one HL with five neurons. Madaeni et al. [43] used the 
experimental data of a full-scale brackish water reverse osmosis (BWRO) 
desalination plant to develop an ANN-based model for predicting Qp and 
permeate electrical conductivity (Condp). The model inputs were oper
ating time (t), transmembrane pressure (TMP), Condf and Qf. The ANN- 
based model had two HLs with eleven and five neurons respectively and 
two outputs. Reasonably high correlation coefficients were found be
tween the experimental and predicted responses for Qp and Condp (0.94 
and 0.96, respectively). Data of five small and large BWRO desalination 
plants were used by Aish et al. [44] to develop an ANN to predict the 
performance in terms of the solute rejection factor and Qp. The obtained 
ANN-based model had one HL with six neurons and one output. For the 
solute rejection factor, differences of 0.96 and 11.25 mg L− 1 were 
detected between the observed and predicted values. Choi et al. [45] 
modeled a full-scale RO desalination plant considering an ANN model 
with one HL, ten neurons and one output for predicting relative pf, 
relative pressure drop (Δp) and relative Cp (relative parameters were the 
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ratio between the values and reference value). The precision of the 
proposed model was quantified by means of the standard deviation of 
error and R2, with the two parameters in a range between 0.014 and 
0.065 and between 0.92 and 0.95, respectively. ANN-based models have 
also been developed for predicting the contaminants of wastewater 
treated by an RO process [46,47]. 

The aim of this paper is to evaluate the performance of a full-scale 
SWRO system with a Pelton turbine as ERD operating under variable 
operating conditions, and to develop an ANN model based on some of 
the obtained experimental data. 

2. Material and methods 

2.1. Plant description 

The SWRO desalination plant is situated in the southeast of Gran 
Canaria (Canary Islands, Spain). A bypass of an existing full-scale SWRO 
desalination plant was made to feed the pilot plant used in this study. 
The pilot SWRO desalination plant (Fig. 1) had one stage and one PV 
with six SWRO membrane modules (Koch Fluid Systems TFC 2822-SS). 
The high pressure pump (HPP CAT 6761) had a three-phase 30 kW 
electric motor and a variable frequency drive (VFD model ATV- 
58HD46N4, Telemecanique now Schneider Electric). This plant was 
tested in a previous work without an ERD and with a regulation valve in 
the brine line [48] (OPRODES project). The membrane modules were 
replaced and a Pelton turbine (Fig. 2) was installed in the brine line 
leaving the regulation valve inoperative. This ERD was not connected 
directly to the HPP (shaft connection), but was coupled to the 30 kW 
electric motor that worked as a generator to measure the turbine- 
generated power. This power was measured for a flow range between 
0.96 and 24 m3 h− 1 and a pressure range of 5.07–7.09 MPa. The Pelton 
turbine was not connected to the HPP because the ERD was installed 
later (the SWRO system was working without an ERD for a while), and so 
connection between the turbine and HPP was not possible. The variable 
operating conditions were reached by means of the variable frequency 
drive of the HPP. Currents between 28 and 57.4 A were set in the VFD. 
This forced the electric motor connected to the HPP to rotate between 
1000 and 1500 rpm. The pressure transmitters and indicators (PI) were 
installed in both the feed and brine lines, while the temperature trans
mitter and indicator (TI, type RTD Pt-100) was installed in the feed line. 
The flow transmitters and indicators (FI, from Endress and Hauser type 
Promag 30, model 99) were installed in both the permeate and brine 
lines, while the conductivity transmitters and indicators (CI, from 
Rosemount Analytical) were installed in the three lines, feed, brine and 
permeate (Fig. 3). The programmable logic controller used for data 
acquisition was the TSX Micro 3722 model from Telemecanique. 

2.2. Experimental data and calculations 

First, the ERD was tested under a wide range of operating conditions, 
namely brine pressure (pb) and brine flow (Qb), to obtain the generated 
power. This was done to check the performance decay for the entire 
operating range of the ERD. Experimental data such as the Tf, pf, pb, Qp, 
Qb, Condp, Condf, brine electrical conductivity (Condb), and electric 
current consumed by the VFD (I) were collected each 30 s. Fig. 3 shows 
the instrumentation in the RO system. A feedwater sample analysis 
published in a previous work using the same SWRO desalination plant 
was considered (Table 1). The experimental runs were carried out 
keeping the R around 42 % and increasing the rotation speed of the 
electric motor from 1000 rpm to 1500 rpm. 

To evaluate the performance of the SWRO pilot plant, the average 
water permeability coefficient (A) and the average solute permeability 
coefficient (B as NaCl) were calculated using the following equations 
[49,50]. 

m = 1.0069 − 2.757⋅10− 4⋅Tf (1)  

ρ = 498.4⋅m+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
248400⋅m2 + 752.4⋅m⋅Cfb

√
(2)  

where m is the molal concentration (mol kg− 1), ρ is the average feed- 

Fig. 1. SWRO desalination pilot plant.  

Fig. 2. Pelton turbine coupled with the generator.  

High 

pressure 

pump

RO system

Brine

Pelton Turbine

MG

Permeate

VFD

Feed

CI TI

PI

CI

Generator

CI

Fig. 3. Flow diagram of the SWRO pilot plant.  

Table 1 
Feed water inorganic composition.  

Ion Concentration (mg L− 1) 

Ca2+ 429.67 
Mg2+ 1342.85 
Na+ 9900 
K+ 320 
HCO3

− 169.6 
SO4

= 2653.45 
Cl− 17,377.17 
SiO2  44.5 
TDS  32,237.34  
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brine density (kg m− 2) and Cfb is the feed-brine concentration (average 
between Cf and permeate concentration (Cp)). Condf and Condb (μS 
cm− 1) were measured. To estimate the respective C (mg L− 1) on the basis 
of the conductivity values, a factor of 0.7 was used in accordance with 
[51]). Cp was calculated by multiplying Condp by 0.51. 

η = 1.234⋅10− 6⋅exp
(

0.00212⋅Cfb +
1965

273.15 + Tf

)

(3)  

D = 6.725⋅10− 6⋅exp
(

0.1546⋅10− 3⋅Cfb −
2513

273.15 + Tf

)

(4)  

Sc =
η

ρ⋅D
(5)  

dh =
4ε

2
h + (1 − ε) 8

h
(6)  

where η is the dynamic viscosity (kg m− 1 s− 1), D is the solute diffusivity 
(m2 s− 1), Sc is the Schmidt number, dh the feed channel hydraulic 
diameter (m), ε the porosity of the cross section area in the feed channel 
(0.89 [52]) and h the feed channel height, which was taken as 28 milli- 
inches (7.11 × 10− 4 m) for the SWRO membrane module TFC 2822-SS. 
Koutsou et al. [53] proposed some correlations to estimate Sh for 
different feed spacer geometries. Information about feed spacer geom
etries of this membrane was not found, and so one of the correlations 
proposed in [53] was used (Eq. (8)). Eqs. (2), (3) and (4) were taken 
from [54]. 

Re =
ρ⋅ν⋅dh

η (7)  

Sh =
k⋅dh

D
= 0.14⋅Re0.64⋅Sc0.42 (8)  

Cm − Cp

Cf − Cp
= exp(Jw/k) (9) 

The temperature correction factor (TCF) was calculated as follows 
[55]: 

If T ⩾ 25◦C: 

TCF = exp
[

2, 640⋅
(

1
298

−
1

273 + T

)]

(10) 

If T ⩽ 25◦C: 

TCF = exp
[

3, 020⋅
(

1
298

−
1

273 + T

)]

(11)  

B =
Cp⋅Qp(

Cm − Cp
)
⋅Sm⋅TCF

(12)  

A =
Jw

(
pf −

Δpfb
2 − pp − πm + πp

)
⋅TCF

(13)  

where Re is the Reynolds number, k is the mass transfer coefficient of 
solute, Cm is the concentration at the membrane surface (mg L− 1), Jw is 
the permeate flux (m3 m− 2 s− 1), Sm is the membrane area (m2), Δpfb is 
the average feed-brine pressure drop in the feed channel (Pa), pp is the 
permeate pressure (this was not measured but was taken as 35 kPa), πm 
is the average osmotic pressure (Pa) at the membrane surface, and πps is 
the permeate osmotic pressure (Pa). All osmotic pressures were calcu
lated considering the concentration as NaCl according to the detailed 
information reported by the American Society for Testing and Materials 
(ASTM) [56]. Both the permeability coefficients, A and B, were calcu
lated at 25 ◦C (applying the adopted TFC) so that the results could be 
comparable with other experimental studies carried out under different 
operating temperatures. 

2.3. ANN-based model of the SWRO pilot plant 

The proposed ANN-based model has 4 inputs (4 neurons), Condf, pf, 
Qf and Tf (Fig. 4). The model was used to estimate Qp and Condp (out
puts) separately, with two ANNs (one for each output). The architecture 
of the selected ANN is a multilayer perceptron with a feedforward 
structure [57]. Two hidden layers of neurons were selected given that, in 
theory, there is no justification to use more, as one hidden layer is the 
most appropriate for most problems [58,59]. It should be noted that 
most RO-ANN studies have considered one or two hidden layers 
[60–62]. More specific criteria to choose the number of hidden layers 
would require further testing [63]. The tan-sigmoid activation function 
(or transfer function) was used for the neurons in the hidden layer, while 
the purelin function was used for the output layer. The performance 
function (Eq. (14)) to evaluate the proposed ANN model was the mean 
square error (MSE) (Eq. (15)). The mean absolute error (MAE) (Eq. (16)) 
and the mean absolute percentage error (MAPE) were also calculated. 

! 

MSE =
1
n
∑n

i=1

(
yi,exp − yi,est

)2 (14)  

MAE =

∑n
i=1

⃒
⃒
(
yi,exp − yi,est

)⃒
⃒

n
(15)  

MAPE =
100
n

∑n

i=1

⃒
⃒
⃒
⃒
yi,exp − yi,est

yi,est

⃒
⃒
⃒
⃒ (16)  

where n is the number of estimated values, yi, exp is the observed value, 
and yi, est is the estimated value. A genetic algorithm was considered to 
set the minimum number of neurons in each hidden layer that minimize 
the MSE. The aforementioned algorithm was implemented in Matlab's 
Global Optimization Toolbox through the ga function [64]. The initial 
population (default 0.05 times the population size) was generated 
randomly with a uniform distribution. Two HLs of neurons were selected 
after checking that better results were obtained with 2 as opposed to 1. 
The number of neurons in both HLs ranged between 1 and 100. The 
training block comprised 70 % of the experimental runs with 15 % set 
aside each for validation and testing. It was decided to use the 
Levenberg-Marquardt backpropagation training algorithm after check
ing that it gave the best results. 

3. Results and discussion 

3.1. Experimental results and performance analysis 

Fig. 5 shows the generated power of the Pelton turbine for different 
pb and Qb values. Membrane manufacturers typically set a maximum Qf 

Condf

pf

Qf

1

j

1

m

NHL-1 NHL-2

Input layer Hidden layers Output layer

Tf

Output

Fig. 4. Schematic representation of the ANN-based model.  
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that depends on the silt density index (SDI) of the feed dilution. 
Maximum feed flows are around 12 m3 h− 1 per PV for a feed solution 
with SDI≤3 [65]. Taking into consideration this data, the ERD could 
operate with an SWRO system of 1 PV to 4 PVs. For a pb range of 4–7 
MPa, the performance decay of the ERD was about 16 %. 

During the operating time, Tf was between 16 and 17 ◦C. The Condf 
was between 40,656 and 45,650 μS cm− 1 (i.e. Cf range of 28.46–31.95 g 
L− 1 considering a conversion factor of 0.7). These variations affected the 
performance of the SWRO plant due to the osmotic pressure variation 
along the operating time. Fig. 6 shows Qp for different pf operating 
values ranging from 4.8 to 6.5 MPa and Qf in the range 5.8–9.4 m3 h− 1. 
The obtained Qp varied from 2.3 to 4.1 m3 h− 1. It should be mentioned 
that different Qp for the same Pin to the HPP were obtained due to 
variation of Tf and pHf, since at higher Tf Qp increases for the same pf due 
to its effect on the coefficient A and the variations of pHf may cause the 
rejection of some solutes to vary as the form in which the ion is found 
varies, as is the case with boron [50], These variations could also be 
caused to a lesser extent by the uncertainty of the measuring devices as is 
usual in this type of SWRO desalination plant. In addition, the operating 
conditions through the pre-treatment step resulted in some changes to 
the flow and pressure conditions at the inlet of the HPP. This affected 
HPP power consumption (Pin), as can be seen in Fig. 7 which shows the 
effects of Qf and pf on Pin. For the aforementioned range of Pin 
(11.2–22.96 kW), the HPP induced a Qf in the range of 5.8–9.4 m3 h− 1 

with a pf between 4.8 and 6.5 MPa. The relation between the power 
input to the SWRO system (input to PV) and Pin was between 68.3 and 
79.5 %. It should be noted that pressure values in the input of the HPP 
were not measured. These values would allow to obtain more precise 
calculations about the performance of the HPP. It was considered that 
the pressure at the input of the HPP was 0, and so all power was sup
posedly supplied by the HPP. In general, Qp increased with higher Pin. 
The reverse situation was observed for Condp, as plotted in Fig. 8. The 
obtained Condp was in the range 259–432 μS cm− 1. Considering a 

conversion factor of 0.51 to estimate Cp, the corresponding range was 
131.2–220.3 mg L− 1. Fig. 9 shows the power generated by the ERD for 
different Qb and pb operating conditions. This generated power varied 
between 2.09 and 6.08 kW for different Qb and pb values in the range of 
4.7–6.4 MPa and 3.2–5.5 m3 h− 1, respectively. It should be considered 
that the connection between the ERD and the HPP was not taken into 
account and an additional loss in power management should be 
included. Fig. 10 shows the SEC of the SWRO pilot plant with and 
without the ERD, with respective results in the range 3.21–4.47 and 
4.41–6.03 kWh m− 3, respectively. When an SWRO system is powered by 
RES, typically the goal is to maximize Qp while maintaining an appro
priate permeate quality for a given Pin. By operating the SWRO pilot 
plant with ERD, a more than 25 % enhancement of Qp was achieved. 
Obtaining a proper permeate quality may be challenging under variable 
operating conditions, and such a challenge increases when less rejected 
ions such as boron [50] and fluorine [66–68] are considered. 

Fig. 11 shows the relation between the coefficients A and B at 25 ◦C. 
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Fig. 5. Power generated by the Pelton turbine for its entire operating range.  

Fig. 6. Qp for different Qf and pf operating values.  

Fig. 7. Effects of Qf and pf on the power consumed by HPP.  

Fig. 8. Condp for different pf and Qf operating values.  

Fig. 9. Power generated by the ERD vs Qb and pb.  
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Under the applied variable operating conditions, no clear trend could be 
plotted between A and B. This may be attributable to the variable 
operating conditions of the SWRO pilot plant in terms of TMP, Cf and 
flow patterns. This unusual behavior also occurs when SWRO systems 
are powered under variable Pin, for instance, when using renewable 
energy sources such as wind and solar [25,69–71]. In this case, coeffi
cient A was in the range between 2.94 × 10− 12 and 3.79 × 10− 12 m Pa− 1 

s− 1 and B between 1.30 × 10− 8 and 1.69 × 10− 8 m s− 1. Without 
considering the TCF, the ranges were between 2.32 × 10− 12 and 2.90 ×
10− 12 m Pa− 1 s− 1 and between 1.02 × 10− 8 and 1.31 × 10− 8 m s− 1 for A 
and B, respectively. These values are not competitive compared with 
SWRO membranes currently available in the market. 

3.2. ANN-based model 

Table 2 shows the architecture and errors of the ANN-based model 
for the two outputs Qp and Condp. The results obtained for Qp were better 
than those for Condp. This is due to the precision and noise associated to 
the electrical conductivity meters, which is normal when measuring 
relatively high electrical conductivities as opposed to flow meters whose 

recording signal is less noisy. Another important factor that affects 
Condp is the pH of the feed aqueous solution. Probably, the measurement 
and inclusion of this parameter in the model would have helped to 
obtain a better Condp estimation. However, taking into consideration a 
conversion factor of 0.51 between Condp and Cp, the error interval was 
in a range of 4.2461×10− 5 - 15.8409 mg L− 1, which is a reasonably 
acceptable approximation. In order to be more specific in terms of 
quality criteria in the permeate, ion determination in real time would be 
needed to create predictive models. However, it is not common to 
measure ions in real time in full-scale RO desalination plants as it in
creases the costs. It should be considered that the weights obtained for 
the model are only valid for this plant and under the described operating 
conditions. If greater temperature changes occur in the feed water and/ 
or the membranes become dirty, causing changes in their permeability 
coefficients, the model must be refitted to obtain new weights. Figs. 12 
and 13 show the experimental and predicted values of Qp and Condp for 
4637 samples by the developed ANN-based model. A stable estimation 
of Qp can be observed along the whole operating range, whereas for 
Condp higher deviations can be detected, especially for samples close to 
1000 and 2900. A weak point is that during the experimental work Tf 
remained fairly constant, and so the model may not identify how 
considerable changes in Tf affect the parameters Qp and Condp. To take 
this into account, a longer operating time would be necessary, although 
TCF could give an estimation. In full-scale RO desalination plants, 
feedwater conditions can change from one day to another which, 
together with the imprecision of electrical conductivity measurements, 
makes it complex to develop a more accurate estimator for Condp. 
However, the advantage is that the experiments were carried out in 
actual operating conditions of full-scale desalination plants and not in 
controlled environments such as those in laboratories. Generally, 
models developed for laboratory pilot plants can present difficulties in 
estimating the real behavior of large-scale plants. 

4. Conclusions 

In this study, an analysis was conducted of the performance of SWRO 
desalination pilot plant with an ERD and operating under variable 
operating conditions, providing useful information about such systems. 
The variability of the results obtained shows how challenging it is to 
predict the behavior of an SWRO system working under a wide oper
ating range. These data should be taken into consideration when SWRO 
desalination plants are powered by variable RES. It should be considered 
that the operating period was short in comparison with full-scale SWRO 
desalination plants, which may be in operation with the same SWRO 
membranes for more than five years. Also, taking into consideration the 
operating conditions in the inlet of the HPP by controlling the pre- 
treatment stage would help to have a better approach in predicting 
the behavior of the desalination plant. Performance losses due to fouling 

Fig. 10. SEC of the SWRO pilot plant with and without ERD.  

Fig. 11. A vs B.  

Table 2 
Structure of the ANN-based model and errors.   

NHL- 
1 

NHL- 
2 

MSE MAE MAPE 
(%) 

Error range 

Qp (m3 

h− 1)  
49  94 1.3070×10− 4  0.0082 3.7780 

× 10− 4 
1.5618 ×
10− 6 - 
0.0849 

Condp 

(μS 
cm− 1)  

40  59 45.5962  5.0335 8.6847 
× 10− 4 

8.3258 ×
10− 5 - 
31.0605  Fig. 12. Experimental and estimated values by the ANN-based model for Qp.  
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should additionally be considered when designing this kind of SWRO- 
RES plant. The proposed ERD, comprising a Pelton turbine coupled to 
a generator, is an acceptable device for SWRO desalination plants 
working under wide operating ranges due to its stable performance and 
low maintenance. An ANN-based model is proposed for the estimation of 
Qp and Condp. Model validation was performed with the experimental 
data, making it reliable for the estimation of the aforementioned pa
rameters in full-scale SWRO desalination plants. Unfortunately, the 
experimental runs were not long enough to take into consideration the 
effect of fouling on full-scale SWRO membranes under variable oper
ating conditions. Further research, considering fouling, would be 
needed to develop long-term predictive models for SWRO-RES under 
variable operation and using ERDs. This would help to improve the 
viability of this type of system and provide a more realistic performance 
estimation of SWRO-RES plants. 
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Optimization of RO desalination systems powered by renewable energies. Part i: 
Wind energy, Desalination 160 (3) (2004) 293–299, https://doi.org/10.1016/ 
S0011-9164(04)90031-8. 

[25] E. Ntavou, G. Kosmadakis, D. Manolakos, G. Papadakis, D. Papantonis, 
Experimental evaluation of a multi-skid reverse osmosis unit operating at 
fluctuating power input, Desalination 398 (2016) 77–86, https://doi.org/10.1016/ 
j.desal.2016.07.014. 

[26] C.-S. Karavas, K.G. Arvanitis, G. Kyriakarakos, D.D. Piromalis, G. Papadakis, 
A novel autonomous PV powered desalination system based on a DC microgrid 
concept incorporating short-term energy storage, Sol. Energy 159 (2018) 947–961, 
https://doi.org/10.1016/j.solener.2017.11.057. 

[27] F. Calise, F.L. Cappiello, R. Vanoli, M. Vicidomini, Economic assessment of 
renewable energy systems integrating photovoltaic panels, seawater desalination 
and water storage, Appl. Energy 253 (2019), 113575, https://doi.org/10.1016/j. 
apenergy.2019.113575. 

[28] A.A. Monjezi, Y. Chen, R. Vepa, A.E.-H.B. Kashyout, G. Hassan, H.E.-B. Fath, A.E.- 
W. Kassem, M.H. Shaheed, Development of an off-grid solar energy powered 
reverse osmosis desalination system for continuous production of freshwater with 

Fig. 13. Experimental and estimated values by the ANN-based model 
for Condp. 

A. Ruiz-García et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.desal.2020.114569
https://doi.org/10.1016/j.desal.2020.114569
https://doi.org/10.1016/j.rser.2021.110712
https://doi.org/10.1016/j.desal.2022.115768
https://doi.org/10.1016/j.desal.2016.10.002
https://doi.org/10.1016/j.psep.2021.10.014
https://doi.org/10.1016/j.desal.2021.115035
https://doi.org/10.1016/j.desal.2022.115715
https://doi.org/10.1016/j.enconman.2020.113377
https://doi.org/10.1016/j.enconman.2020.113377
https://doi.org/10.3390/pr8040382
https://doi.org/10.1016/j.rser.2016.09.137
https://doi.org/10.1016/j.rser.2017.07.047
https://doi.org/10.1016/j.solener.2016.09.028
https://doi.org/10.1016/j.solener.2016.09.028
https://doi.org/10.1016/j.rser.2018.11.009
https://doi.org/10.1016/j.desal.2018.03.021
https://doi.org/10.1016/j.desal.2018.03.021
https://doi.org/10.1016/j.enconman.2018.07.083
https://doi.org/10.1016/j.enconman.2018.07.083
https://doi.org/10.1016/j.desal.2016.05.019
https://doi.org/10.1016/j.desal.2018.03.007
https://doi.org/10.1016/j.desal.2018.03.007
https://doi.org/10.1016/j.energy.2011.04.005
https://doi.org/10.1016/j.energy.2011.04.005
https://doi.org/10.1016/j.desal.2017.06.001
https://doi.org/10.1016/j.desal.2017.06.001
https://doi.org/10.1016/j.apenergy.2014.03.033
https://doi.org/10.1016/j.renene.2018.11.065
https://doi.org/10.1016/j.renene.2018.11.065
https://doi.org/10.1016/j.seppur.2015.10.025
https://doi.org/10.1016/j.seppur.2019.03.004
https://doi.org/10.1016/S0011-9164(04)90031-8
https://doi.org/10.1016/S0011-9164(04)90031-8
https://doi.org/10.1016/j.desal.2016.07.014
https://doi.org/10.1016/j.desal.2016.07.014
https://doi.org/10.1016/j.solener.2017.11.057
https://doi.org/10.1016/j.apenergy.2019.113575
https://doi.org/10.1016/j.apenergy.2019.113575


Desalination 555 (2023) 116523

9

integrated photovoltaic thermal (PVT) cooling, Desalination 495 (2020), 114679, 
https://doi.org/10.1016/j.desal.2020.114679. 

[29] A.M. Delgado-Torres, L. García-Rodríguez, M.J. del Moral, Preliminary assessment 
of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid 
solar photovoltaic (PV) - tidal range energy system, Desalination 477 (2020), 
114247, https://doi.org/10.1016/j.desal.2019.114247. 

[30] J. Schallenberg-Rodríguez, B. Del Rio-Gamero, N. Melian-Martel, T. Lis Alecio, 
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