9 research outputs found

    Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

    Get PDF
    In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure—or flame brush spatial distribution—and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane–air in the range of equivalence ratio (φ) from the lean blowout limit to φ=0.75. First, we observe the different dynamic modes in this lean range as φ is raised. We also document the effect of φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length—by downstream truncation—without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor—which occurs simultaneously with the onset of instability at the fundamental frequency—happens at similar φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with φ. The spectral analysis of this phenomenon—we refer to as “ORZ flame flickering”—shows the presence of unsteady events occurring at two distinct low frequency ranges. A broad band at very low frequency in the range ∼(1 Hz–10 Hz) associated with the expansion and contraction of the inner recirculation zone (IRZ) and a narrow band centered around 28 Hz which is the frequency of rotation of the flame as it is advected by the ORZ flow.King Fahd University of Petroleum and Minerals (Grant R12-CE-10)King Abdullah University of Science and Technology (Grant KUS-110-010-01

    Transition From a Single to a Double Flame Structure in Swirling Reacting Flows: Mechanism, Dynamics, and Effect of Thermal Boundary Conditions

    Get PDF
    We examine experimentally the transition from a single flame stabilized along the inner shear layer (ISL) to a double flame stabilized along both the inner and the outer shear layers (OSL) and spreading over the outside recirculation zone (ORZ) in a fully premixed swirl-stabilized combustor. This work is mainly driven by previous studies demonstrating the link between this transition in the flame macrostructure and the onset of thermo-acoustic instabilities. Here, we examine the transition mechanism under thermo-acoustically stable conditions as well as the dominant flow and flame dynamics associated with it. In addition, we explore the role of changing the thermal boundary conditions around the ORZ and its effect on the presence or absence of the flame there. We start by analyzing the two flames bounding the transition, namely the single conical flame stabilized along the ISL (flame III) and the double conical flames with reactions taking place in the ORZ (flame IV). A dual chemiluminescence approach — using two cameras with a narrow field of view focused on the ORZ — is undertaken to track the progression of the flame as it reaches the ORZ. During the transition, the flame front, initially stabilized along the ISL, is entrained by OSL vortices close to where the turbulent jet impinges on the wall, leading to the ignition of the reactants in the ORZ and the ultimately the stabilization of the flame along the outer shear layer (OSL). This ORZ flame is also subject to extinction when the equivalence ratio (ϕ) is between values corresponding to flames III and IV. For ϕ lower than the critical transitional value, the flame kernel originating from the ISL-stabilized flame is shown to reach the ORZ but fails to grow and quickly disappears. For ϕ higher than the critical value, the flame kernel expands as it is advected by the ORZ flow and ultimately ignites the reactants recirculating in the ORZ. Sudden and extreme peak-to-peak values of the overall heat release rate are found to be concomitant with the ignition and extinction of the ORZ reactants. Finally, Different thermal boundary conditions are tested by modifying the heat flux through the combustion chamber boundary, particularly around the ORZ. We find that the transition is affected in different ways: while the transition from flame III to IV (i.e. as ϕ increases) is insensitive to these changes; flame IV persists at lower ϕ as its value is reduced when heat losses through the boundaries are diminished.Center for Clean Water and Clean Energy at MIT and KFUPM (Grant R12-CE-10

    Impact of fuel and oxidizer composition on premixed flame stabilization in turbulent swirling flows : dynamics and scaling

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 205-214).The world relies on fossil fuels as its main energy source (86.7% in 1973, 81.7% in 2012). Several factors including the abundance of resources and the existing infrastructure suggest that this is likely to continue in the near future (potentially 75% in 2040). Meanwhile climate change continues to be a pressing concern that calls for the development of low CO2 energy systems. Among the most promising approaches are pre-combustion capture technologies, e.g., coal gasification and natural gas reforming that produce hydrogen-rich fuels. Another approach is oxy-combustion in which air is replaced by a mixture of O2/CO2/H2O as the oxidizer stream. However, modern gas turbines have been optimized to operate on methane-air combustion and several challenges, notably thermo-acoustic instability, arise when using other fuels or oxidizers because of their different thermochemical and transport properties. While these phenomena constitute a major challenge under conventional operations, using hydrogen-rich fuels or CO2-rich oxidizer exacerbates the problem by modifying the combustor stability map in ways that are not well understood. In this thesis, we identify combustion modes most prone to dynamics, predict the onset of thermo-acoustic instability over a wide range of fuel and oxidizer compositions, and define parameters that can scale the data. To this end, a combination of experimental and numerical tools were deployed. We carried out a series of experiments in an optically accessible laboratory-scale swirl-stabilized combustor typical of those found in modern gas turbines, using high-speed chemiluminescence to examine the flame macrostructure; high-speed Particle Image Velocimetry and OH Planar Laser Induced Fluorescence to probe the flow and flame microstructure. Numerical simulations were used to complement experiments and examine the complex three-dimensional two-way interaction between the flame and the turbulent swirling flow. Experimental data were used to construct the stability maps for different CH4-H2 mixtures and analyze the dynamic flame macrostructures and their transitions. A comparison with acoustically uncoupled combustion shows that the onset of thermo-acoustic instability is concomitant with a specific transition associated with the intermittent appearance of the flame in the outer recirculation zone (ORZ) and stabilization along the outer shear layer (forming between the swirling jet and the ORZ, as revealed by the PIV-PLIF data). The sudden onset of large amplitude limit cycle oscillations and the observed hysteresis suggest the existence of a sub-critical Hopf bifurcation typically characterized by a bistable or "triggering" zone; the flame intermittency in the ORZ can potentially provide the disturbance required to trigger these oscillations. Using a dual-camera method to track chemiluminescence in space and time, this flame transition was found to originate from a reacting kernel that detaches from the inner shear layer flame (forming between the jet and the vortex breakdown zone), reaching the ORZ and spinning at a specific frequency; its characteristic Strouhal number is independent of the Reynolds number and the fuel/oxidizer, only a function of the swirl strength. We propose a new Karlovitz number based criterion that defines the transition on a flow time - flame time space, the former being the inverse of the spinning frequency and the latter being the flame extinction strain rate. According to this scaling, the flame survives in the ORZ if and when it can overcome the region's bulk strain rate. This criterion is valid over a wide range of operating, fuel and oxidizer composition, covering a wide range of fast to slow chemistry scenarios. Given the role of this flame transition in triggering the instability, the same criterion is applicable to predicting the onset of thermo-acoustics. The interaction of the turbulent swirling flow with the flame is further examined using large eddy simulations. Numerical simulations show that the experimentally observed large scale flame structures along the inner shear layer are due to a helical vortex core that originates at the swirler's centerbody. This vortical structure stays aligned with the centerline in the combustor upstream section, but bends and reaches the inner shear layer-stabilized flame around the sudden expansion where it causes the flame wrinkling. We propose that the flame kernel igniting the ORZ/ OSL observed in the experiment may be related to the interaction between the helical vortical structure and the outer shear layer.by Soufien Taamallah.Ph. D
    corecore