12 research outputs found

    Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants

    Get PDF
    Phytohormones (PHs) play crucial role in regulation of various physiological and biochemical processes that govern plant growth and yield under optimal and stress conditions. The interaction of these PHs is crucial for plant survival under stressful environments as they trigger signaling pathways. Hormonal cross regulation initiate a cascade of reactions which finely tune the physiological processes in plant architecture that help plant to grow under suboptimal growth conditions. Recently, various studies have highlighted the role of PHs such as abscisic acid, salicylic acid, ethylene, and jasmonates in the plant responses toward environmental stresses. The involvement of cytokinins, gibberellins, auxin, and relatively novel PHs such as strigolactones and brassinosteroids in plant growth and development has been documented under normal and stress conditions. The recent identification of the first plant melatonin receptor opened the door to this regulatory molecule being considered a new plant hormone. However, polyamines, which are not considered PHs, have been included in this chapter. Various microbes produce and secrete hormones which helped the plants in nutrient uptake such as N, P, and Fe. Exogenous use of such microbes help plants in correcting nutrient deficiency under abiotic stresses. This chapter focused on the recent developments in the knowledge related to PHs and their involvement in abiotic stresses of anticipation, signaling, cross-talk, and activation of response mechanisms. In view of role of hormones and capability of microbes in producing hormones, we propose the use of hormones and microbes as potential strategy for crop stress management.Fil: EL Sabagh, Ayman. Scientific And Technological Research Council Of Turkey; TurquíaFil: Islam, Mohammad Sohidul. Kafrelsheikh University; EgiptoFil: Hossain, Akbar. Hajee Mohammad Danesh And Technology University; BangladeshFil: Iqbal, Muhammad Aamir. University Of Poonch; PakistánFil: Mubeen, Mohammad. Comsats University Islamabad; PakistánFil: Waleed, Mirza. Comsats University Islamabad; PakistánFil: Reginato, Mariana Andrea. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones Agrobiotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Agrobiotecnológicas; ArgentinaFil: Battaglia, Martin. Cornell University; Estados UnidosFil: Ahmed, Sharif. International Rice Research Institute; FilipinasFil: Rehman, Abdul. The Islamia University Of Bahawalpur; PakistánFil: Arif, Muhammad. The University Of Agriculture; PakistánFil: Athar, Habib-Ur-Rehman. Bahauddin Zakariya University; PakistánFil: Ratnasekera, Disna. University Of Ruhuna; Sri LankaFil: Danish, Subhan. Bahauddin Zakariya University; PakistánFil: Raza, Ali. Sichuan Agricultural University; ChinaFil: Rajendran, Karthika. Vellore Institute Of Technology; IndiaFil: Mushtaq, Muntazir. Icar-national Bureau Of Plant Genetic Resources; IndiaFil: Skalicky, Milan. Czech University Of Life Sciences Prague; República ChecaFil: Brestic, Marian. Czech University Of Life Sciences Prague; República ChecaFil: Soufan, Walid. King Saud University; Arabia SauditaFil: Fahad, Shah. University Of Haripur; PakistánFil: Pandey, Saurabh. Guru Nanak Dev University; IndiaFil: Abdelhamid, Magdi T.. National Research Centre Dokki; Egipt

    Cowpea [Vigna unguiculata (L.) Walp] herbage yield and nutritional quality in cowpea-sorghum mixed strip intercropping systems

    Get PDF
    En los sistemas tradicionales de cultivo intercalado de frijol caupí y sorgo en franjas y filas, el rendimiento de forraje del frijol caupí se reduce significativamente debido a la intensa competencia y al dominio del sorgo en la adquisición de recursos para el cultivo. Este estudio de campo evaluó novedosos sistemas de cultivo intercalado en franjas mixtas de frijol caupí forrajero y sorgo con diferente número de filas de cultivo en diferentes disposiciones espaciales. El frijol caupí se intercaló con el sorgo en franjas de 8, 12 y 16 filas con un espaciamiento de 30, 45 y 60 cm entre las filas. En cada franja se mantuvo igual número de filas de frijol caupí y sorgo. Para la ejecución de los ensayos de campo durante las temporadas de verano de 2013 y 2014 se utilizó un diseño factorial en bloques completos aleatorizados con tres repeticiones. Las franjas con 12 filas y un espaciamiento de 60 cm entre las filas afectaron positivamente a todas las variables agronómicas del frijol caupí que condujeron al máximo rendimiento forrajero (22.2 y 23.7 t/ha en 2013 y 2014, respectivamente) y de biomasa de materia seca (6.63 y 6.94 t/ha en 2013 y 2014, respectivamente). En cambio, las franjas de 8 filas con un espaciamiento de 30 cm superaron a otros sistemas de cultivo intercalado al obtener el rendimiento máximo de hierba y de biomasa de materia seca del sorgo. El sistema de cultivo intercalado compuesto por franjas de 12 filas con un espaciamiento de 60 cm entre las filas siguió siendo superior, al registrar el contenido máximo de proteína bruta, grasas y cenizas junto con el mínimo contenido de fibra de frijol caupí. Además, este sistema de cultivo intercalado bajo el resto de las disposiciones espaciales también permaneció incomparable, mientras que las franjas de 16 filas bajo todas las geometrías de siembra permanecieron inferiores a otros sistemas de cultivo intercalado. Por lo tanto, el cultivo intercalado de frijol caupí con sorgo en franjas de 12 filas con un espaciado de 60 cm ofrece una solución biológicamente viable para mejorar la biomasa y la calidad del forraje del caupí en cultivo intercalado con sorgo.In traditional row and strip cowpea-sorghum intercropping systems, cowpea forage yield reduces significantly due to intense competition and dominance of sorghum in acquiring growth resources. This field study evaluated novel mixed strip intercropping systems of forage cowpea and sorghum having different number of crops rows arranged under different spatial arrangements. Cowpea was intercropped with sorghum in 8, 12 and 16 rows strips with row-row spacing of 30, 45 and 60 cm. In each strip, equal number of rows of cowpea and sorghum were maintained. Factorial arrangement of randomized complete block design with three replicates was used to execute the field trials during summer seasons of 2013 and 2014. Strips having 12 rows and 60 cm row-row spacing positively affected all agronomic variables of cowpea which led to maximum forage yield (22.2 and 23.7 t ha-1 during 2013 and 2014 respectively) and dry matter biomass (6.63 and 6.94 t ha-1 during 2013 and 2014 respectively). In contrast, 8-rows strips having line spacing of 30 cm outperformed other intercropping systems by yielding the maximum herbage yield and dry matter biomass of sorghum. The intercropping system comprising of 12-rows strips with 60 cm row-row spacing remained superior in recording the maximum crude protein, fats and total ash along with the minimum fiber content of cowpea. In addition, this intercropping system under rest of spatial arrangements also remained unmatched, while 16-rows strips under all planting geometries remained inferior to other intercropping systems. Thus, cowpea intercropping with sorghum in 12-rows strips having 60 cm spacing offers biologically viable solution to improve biomass and forage quality of cowpea in intercropping with sorghum

    Unraveling the synergistic effects of microbes and selenium in alleviating drought stress in Camelina sativa L.

    No full text
    Globally, drought has emerged as one of the most serious threats to oil seed crops including Camelina production, which necessitates screening of drought resistant cultivars that are more responsive to mitigation treatments. Effect of microbes and Selenium (Se) is associated with the upregulation of available nutrients. Therefore, present study was aimed to evaluate the effect of Se interactions with arbuscular mycorrhizal fungi Rhizophagus intraradices at four different treatments (T1: CK), T2: inoculation of R. intraradices), T3: Se-priming (2 mM), T4: inoculation of R. intraradices+ Se-priming (2 mM) on two Camelina genotypes (Australian and Canadian) under varied water levels (100%, 75%, 50%, and 25% field capacity, FC). Se with Seed priming and microbes were applied through inoculation of Camelina seed. The experiment was conducted in a Completely Randomized Design (CRD) with three replications at MNS- University of Agriculture Multan, Pakistan. The results exhibited that inoculation of R. intraradices + Se-priming (2 mM) application significantly improved the physiological and growth parameters of Camelina under water stress. The application of inoculation of R. intraradices + Se-priming (2 mM) increased crop growth, physiology, and antioxidants as compared to other treatments (T1: (Control), T2: Microbes (R. intraradices), T3: Se-priming (2 mM). The application of Microbes + Se-priming (2 mM) increased the total soluble sugars by 69.6%, 23.4%, and 10.8% as compared to other treatments (T1: (Control), T2: inoculation of R. intraradices), T3: Se-priming (2 mM)., respectively, irrespective of field capacity levels. Among varied water levels, 100% FC showed unmatched results regarding crop growth traits, physiological aspects, and antioxidants activities as compared to water stressed levels of 75%, 50%, and 25% FCs. Proline contents were also increased by 93.9%, 52.5%, and 10.2% at 100% FC as compared to 25%, 50%, and 75% FCs. The response of Canadian Camelina was found better than Australian Camelina in most of the growth, physiological, and antioxidant parameters. Canadian Camelina also showed a 2.14% increase in superoxide dismutase activity as compared to Australian Camelina. The combination of Canadian Camelina inoculation of R. intraradices + Se-priming (2 mM) is recommended to achieve higher productivity under water-stressed conditions. However, long-term studies must be conducted to screen out drought resistant and inoculation of R. intraradices + Se-priming responsive genotypes for increasing Camelina yield in low input farming systems. Further, Se-mediated physiological and biochemical associated with drought tolerance in Camelina plants and future research prospects have been elucidated

    Potential Effects of Biochar Application for Improving Wheat (<i>Triticum aestivum</i> L.) Growth and Soil Biochemical Properties under Drought Stress Conditions

    No full text
    Different soil amendments are applied to improve soil properties and to achieve higher crop yield under drought conditions. The objective of the study was to investigate the role of biochar for the improvement of wheat (Triticum aestivum L.) growth and soil biochemical properties under drought conditions. A pot experiment with a completely randomized design was arranged with four replications in a wire house. Drought was imposed on two critical growth stages (tillering and grain filling) and biochar was applied to the soil 10 days before sowing at two different rates (28 g kg−1 and 38 g kg−1). Soil samples were collected to determine the soil properties including soil respiration and enzymatic parameters after crop harvesting. Results showed that water stress negatively affects all biochemical properties of the soil, while biochar amendments positively improved these properties. Application of biochar at 38 g kg−1 provided significantly higher mineral nutrients, Bray P (18.72%), exchangeable-K (7.44%), soil carbon (11.86%), nitrogen mineralization (16.35%), and soil respiration (6.37%) as a result of increased microbial activities in comparison with the 28 g kg−1 rate

    Yield, Phytochemical Constituents, and Antibacterial Activity of Essential Oils from the Leaves/Twigs, Branches, Branch Wood, and Branch Bark of Sour Orange (Citrus aurantium L.)

    No full text
    In the present work, essential oils (EOs) extracted from different parts of sour orange Citrus aurantium (green leaves/twigs, small branches, wooden branches, and branch bark) were studied through gas chromatography coupled with mass spectrometry (GC/MS). Furthermore, the EOs in the amounts of 5, 10, 15, 20, and 25 &micro;L were studied for their antibacterial activity against three pathogenic bacteria, Agrobacterium tumefaciens, Dickeya solani, and Erwinia amylovora. The main EO compounds in the leaves/twigs were 4-terpineol (22.59%), D-limonene (16.67%), 4-carvomenthenol (12.84%), and linalool (7.82%). In small green branches, they were D-limonene (71.57%), dodecane (4.80%), oleic acid (2.72%), and trans-palmitoleic acid (2.62%), while in branch bark were D-limonene (54.61%), &gamma;-terpinene (6.68%), dodecane (5.73%), and dimethyl anthranilate (3.13%), and in branch wood were D-limonene (38.13%), dimethyl anthranilate (8.13%), (-)-&beta;-fenchol (6.83%), and dodecane (5.31%). At 25 &micro;L, the EO from branches showed the highest activity against A. tumefaciens (IZ value of 17.66 mm), and leaves/twigs EO against D. solani and E. amylovora had an IZ value of 17.33 mm. It could be concluded for the first time that the wood and branch bark of C. aurantium are a source of phytochemicals, with D-limonene being the predominant compound in the EO, with potential antibacterial activities. The compounds identified in all the studied parts might be appropriate for many applications, such as antimicrobial agents, cosmetics, and pharmaceuticals

    Influence of Tillage Systems and Cereals–Legume Mixture on Fodder Yield, Quality and Net Returns under Rainfed Conditions

    No full text
    Livestock development in rainfed areas is slower due to the inadequate supply of nutritious fodder. Mono-cropping systems also have a negative impact on forage yield and nutrition as cereals are deficient in protein. Hence, there is a dire need to grow cereals with legumes to improve forage yield and quality. Therefore, a two-year field study was undertaken to evaluate winter cereal–legume forage and their mixtures viz. oats (cv. PD2-LV65), barley (Jau-86) and one legume viz. vetch (cv. Languedock) under different tillage systems viz. conventional tillage (moldboard plow+4-cultivation with tines) and conservation tillage (3-cultivation with tines). Crops were grown in pure stands as well as in mixtures with a 70:30 seeding ratio. The results revealed that the conventional tillage system performed better in terms of numbers of tillers/branches, leaf-to-stem ratio and green fodder yield than the conservation tillage system. However, the conventional and conservation tillage systems did not show a significant difference in terms of crude protein, acid detergent fiber and neutral detergent fiber. In the pure stands and cereal–legume mixtures, the oat–vetch mixture performed better in terms of plant height, leaf-to-stem ratio and green fodder yield. The maximum crude protein content was observed in the oat–vetch mixture, while the maximum acid detergent fiber and neutral detergent fiber were observed in the pure oat stands. In competitive indices, the land-equivalent ratio and competitive ratio showed the advantage of intercropping. In actual yield loss, results showed the positive value of barley and oats in mixtures, which reflects the advantage of intercropping in the rainfed areas. The economic analysis showed a greater net benefit from the conventional tillage than the conservation tillage system under rainfed conditions. On the basis of this investigation, an oat–vetch mixture and the conventional tillage system are recommended for higher tonnage of nutritious fodder in rainfed areas

    Table_1_Investigating the role of bentonite clay with different soil amendments to minimize the bioaccumulation of heavy metals in Solanum melongena L. under the irrigation of tannery wastewater.DOCX

    No full text
    Wastewater from tanneries is a major source of heavy metals in soil and plants when used for crop irrigation. The unavoidable toxicological effects of this contamination, however, can be minimized through two independent steps discussed in the present study. In the first step, a batch sorption experiment was conducted in which Cr was adsorbed through bentonite clay. For this purpose, DTPA extraction method was used to analyze Cr concentration in the soil after regular time intervals (0.5, 1, 2, 6, 8, 9, 10.5, 11.5, and 20.3 h) which reduced Cr concentration from 38.542 mgL–1 for 30 min to 5.6597 mgL–1 for 20.3 h, respectively, by applying 1% bentonite. An increase in the contact time efficiently allowed soil adsorbent to adsorb maximum Cr from soil samples. In the second step, a pot experiment was conducted with 10 different treatments to improve the physiological and biochemical parameters of the Solanum melongena L. irrigated under tanneries’ wastewater stress. There were four replicates, and the crop was harvested after 30 days of germination. It was seen that the application of wastewater significantly (P 2O3 nanoparticles); chlorophyll a and b (fourfolds) were improved under CFOP application relative to control (CN). However, the deleterious effects of Cr (86%) and Pb (90%) were significantly decreased in shoot through CFOP application relative to CN. Moreover, oxidative damage induced by the tannery’s wastewater stress (P 2O2 (89%), and CMP (85%) by efficiently triggering the activities of antioxidant defense mechanisms such as APX (threefold), CAT (twofold), and phenolics (75%) in stem relative to CN. Consequently, all the applied amendments (BN, BT, FOP, and CFOP) have shown the ability to efficiently tolerate the tannery’s wastewater stress; results were more pronounced with the addition of CFOP and FOP+BT by improving physiological and biochemical parameters of Solanum melongena L. in an eco-friendly way.</p
    corecore