111 research outputs found

    Lessons from prospective longitudinal follow-up of a French APECED cohort

    Get PDF
    Background Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome is a rare disease caused by biallelic mutations of the AIRE gene, usually presenting with the triad hypoparathyroidism-adrenal failure-chronic mucocutaneous candidiasis (CMC) and nonendocrine manifestations. The aim of this study was to determine the molecular profile of the AIRE gene, the prevalence of rare manifestations, and to characterize immunological disturbances in a French cohort. Patients and Methods A national, multicenter prospective observational study to collect genetic, clinical, biological, and immunological data (NCT03751683). Results Twenty-five patients (23 families) were enrolled. Eleven distinct AIRE variants were identified, 2 of which were not previously reported: an intronic variant, c.653-70G > A, and a c.1066del (p.Arg356GlyfsX22) variant (exon 9). The most common was the Finnish variant c.769C > T (16 alleles), followed by the variant c.967_979del13 (15 alleles), which seemed associated with a less severe phenotype. Seventeen out of 25 patients were homozygote. The median number of clinical manifestations was 7; 19/25 patients presented with the hypoparathyroidism-adrenal failure-CMC triad, 8/13 showed pulmonary involvement, 20/25 had ectodermal dystrophy, 8/25 had malabsorption, and 6/23 had asplenia. Fifteen out of 19 patients had natural killer cell lymphopenia with an increase in CD4+ and CD8+ T lymphocytes and an age-dependent alteration of B lymphocyte homeostasis compared with matched controls (P < .001), related to the severity of the disease. All tested sera (n = 18) were positive for anti-interferon-α, 15/18 for anti-IL-22 antibodies, and 13/18 for anti-IL-17F antibodies, without clear phenotypic correlation other than with CMC. Conclusion This first prospective cohort showed a high AIRE genotype variability, with 2 new gene variants. The prevalence of potentially life-threatening nonendocrine manifestations was higher with systematic screening. These manifestations could, along with age-dependent B-cell lymphopenia, contribute to disease severity. Systematic screening for all the manifestations of the syndrome would allow earlier diagnosis, supporting vaccination and targeted therapeutic approaches

    Modifying PTR-MS operating conditions for quantitative headspace analysis of hydro-alcoholic beverages. 2. Brandy characterization and discrimination by PTR-MS

    No full text
    Abstract not availableGuillaume Fiches, Isabelle Déléris, Anne Saint-Eve, Pascal Brunerie, Isabelle Soucho

    A review of the approaches to predict the ease of swallowing and post-swallow residues

    Get PDF
    Background Swallowing is a complex physiological process transporting food from the mouth into the esophagus. Understanding how food properties condition flow, ease of swallowing and amount of post-swallow residues can support the design and development of novel products with improved texture and swallow-ability. Diagnostics allowed visualizing directly the effect of bolus consistency on flow, but complementary approaches are needed to speed up the pace of product innovation. Scope and approach This review summarizes the state of the art with respect to the in vitro and in silico approaches to predict the ease of swallowing, with an overview of the oral, pharyngeal and esophageal swallowing. Physical and computational models are discussed and compared, highlighting capabilities and limitations. Key findings and conclusions In vitro and in silico experiments represent attractive complements to the in vivo investigations because they allow varying parameters independently, which is key to understand the effect of different food and drink properties and to adapting them to different needs. Two motor control strategies are commonly used, namely imposing displacements or stresses. These models have helped clarifying the role of bolus rheology in the oral phase of swallowing and the importance of salivary coating in the pharyngeal bolus flow. Few areas of improvements were identified: the use of more realistic geometries and mechanical properties representing the relevant tissues, of lubrication boundary conditions and of a wider variety of food boli. Further clinical studies should also focus on identifying the most realistic motor control strategy to mimic human swallowing.</p
    corecore