48 research outputs found
Analyse de la dynamique du facteur de transcription HSF1 "Heat Shock Factor 1" par microscopie de fluorescence
La majorité des études sur la dynamique des facteurs de transcription en cellules vivantes s'accordent sur une dynamique rapide. Il existe cependant quelques exceptions, comme la dynamique du facteur de transcription HSF Heat Shock Factor , sur les chromosomes polyténiques de drosophile. Notre projet a consisté à étudier la dynamique d'HSF1 dans des cellules humaines. L'exposition des cellules à un stress tel qu'un choc thermique induit une réponse ubiquitaire et transitoire, dont la fonction est de protéger les cellules contre les effets délétères du stress. Au cours d'un choc thermique, plusieurs phénomènes se produisent : i) un arrêt global de la transcription excepté pour certains gènes tels que ceux codant pour les protéines de choc thermique (HSPs), dont l'expression est sous le contrôle du facteur de transcription HSF1. ii) une activation d'HSF1 qui se relocalise de façon rapide et transitoire sur les corps nucléaires de stress (nSBs), où il induit la transcription des séquences satellite III. Les nSBs forment un site d'activité naturellement amplifié et visible en microscopie. Nous avons utilisé deux techniques complémentaires pour étudier la dynamique d'HSF1 en cellules vivantes : le recouvrement de fluorescence après photoblanchiment (FRAP) et la spectroscopie à corrélation de fluorescence multi-confocale (mFCS), qui permet l'analyse FCS en plusieurs points simultanément. En cellules HeLa, la protéine HSF1-eGFP présente une dynamique rapide qui est significativement ralentie suite à un choc thermique. En mFCS, nous avons obtenu des constantes de diffusion de 14 m /s avant choc thermique et de 10 m /s après choc thermique. En FRAP, le temps de demi-recouvrement est de 0,2 s avant choc thermique, 2,6 s après choc thermique dans le nucléoplasme et 65 s sur les corps nucléaires de stress. Le ralentissement de la dynamique d'HSF1 s'explique par deux phénomènes : i) la formation de complexes de haut poids moléculaire, ii) une augmentation des interactions avec la chromatine. Pour mieux caractériser le changement de dynamique d'HSF1 après choc thermique, plusieurs mutants ont été analysés. Le domaine de trimérisation est indispensable pour le changement de dynamique après choc thermique, alors que le domaine de liaison à l'ADN et le domaine de transactivation n'ont que peu d'effet sur le changement de dynamique. Il ne peut donc pas être expliqué uniquement par les interactions directes à la chromatine du domaine de liaison à l'ADN, ni même par les liaisons indirectes du domaine de transactivation via d'autres protéines. La protéine HSF1 pourrait interagir de façon aspécifique avec la chromatine lors de la recherche de site de liaison, ou d'autres protéines via d'autres domaines pourraient entrainer des interactions indirectes avec la chromatine.The majority of studies made on transcription factors dynamics on living cells agree with a fast dynamics process. However, there is some exceptions such as the dynamics of the transcription factor HSF Heat Shock Factor on drosophila polytenic chromosome. My project is to study HSF1 dynamics in human living cells. Cells exposure to a stress such as heat shock induces a transient and ubiquitous response that function's to protect cells against the deleterious effect of stress. During the course of a heat shock, several phenomenons take place: i) a global arrest of transcription, with the exception of some genes, such as those coding for the heat shock proteins (hsp), which expression is under the control of HSF1. ii) Activation of HSF1 that relocalize in a fast and transient way to nuclear stress bodies (nSBs), where it induces satellite III transcription. nSBs act as a natural amplification gene array, visible on microscopy. We have used two complementary techniques to look at HSF1 dynamics in living cells: Fluorescence recovery after photobleaching (FRAP) and multiconfocal fluorescence correlation spectroscopy (mFCS) that allow FCS analysis at several position simultaneously. On HeLa cells, HSF1-eGFP protein has a fast dynamics which is significantly slowed down following heat shock. On mFCS, we obtained a diffusion constant of 14 m /s before heat shock, and 10 m /s after heat shock. On FRAP, the half recovery time is 0.2 s before heat shock, 2.6 s after heat shock in the nucleoplasm and 65 s in nuclear stress bodies. HSF1 dynamics slowing down may be explain by two phenomenons: i) formation of high molecular mass complexes, ii) rise of interaction of HSF1 with chromatin. To better characterize changes in HSF1 dynamics after heat shock, several mutants have been analyzed. The trimerization domain of HSF1 is essential for dynamics changes after heat shock, while DNA binding domain (DBD) and transactivation domain (TAD) have only little effects on dynamics changes. These changes cannot only be explained by direct interaction of DNA binding domain with chromatin, neither by indirect interaction of the transactivation domain with other protein partners. HSF1 could be able to interact non-specifically with chromatin during the search for specific binding sites. Also other proteins via other domains might induce indirect binding to chromatin.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements
We report, for the first time, a multi-confocal Fluorescence Correlation
Spectroscopy (mFCS) technique which allows parallel measurements at different
locations, by combining a Spatial Light Modulator (SLM), with an Electron
Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser
spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The
phase map addressed to the SLM is calculated by using the spherical wave
approximation and makes it possible to produce several diffraction limited
laser spots, either aligned or spread over the field of view. To attain fast
enough imaging rates, the camera has been used in different acquisition modes,
the fastest of which leads to a time resolution of 100 s. We qualified the
experimental set-up by using solutions of sulforhodamine G in glycerol and
demonstrated that the observation volumes are similar to that of a standard
confocal set-up. To demonstrate that our mFCS method is suitable for
intracellular studies, experiments have been conducted on two stable cell
lines: mouse embryonic fibroblasts expressing eGFP-actin and H1299 cells
expressing the heat shock factor fusion protein HSF1-eGFP. In the first case we
could recover, by analyzing the auto-correlation curves, the diffusion constant
of G-actin within the cytoplasm, although we were also sensitive to the complex
network of interactions with F-actin. Concerning HSF1, we could clearly observe
the modifications of the number of molecules and of the HSF1 dynamics during
heat shock
Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density
AbstractHistone macroH2A, which is a subtype of histone H2A, possesses a histone H2A-like portion fused to a relatively long non-histone portion. MacroH2A has been shown to associate preferentially with the inactive X chromosome [1]. To investigate the specificity of this association, the nuclear distribution of macroH2A was compared with that of regular core histones. In normal human female fibroblasts, all anti-histone antibodies that were tested (including anti-macroH2A antibody) preferentially labeled the inactive X chromosome. Moreover, when expressed as green fluorescent protein (GFP) fusions, both histone H2A and macroH2A were concentrated in the Barr body. These data clearly show the presence of a higher density of nucleosomes in the inactive X chromosome. Accordingly, the specificity of the macroH2A association with the inactive X chromosome should be reconsidered. While investigating the role of macroH2A, we found that the proximity of the non-histone region of macroH2A to a promoter could lead to a specific repression of transcription, suggesting that the incorporation of macroH2A into chromatin might help to establish the stable pattern of gene expression in differentiated cells
Modifications de la composition en acides gras du meibum et de la surface oculaire de patients souffrant de dysfonctionnement meibomien après traitement par minocycline
DIJON-BU MĂ©decine Pharmacie (212312103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Teneur en ADN de l'ovocyte de souris au stade préleptotène de condensation chromosomique
International audienc
Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells.
International audienceCells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes
Numerical Acquisition of Multiple Immunofluorescence Labelling
Tools used in numerical acquisition of epi-fluorescence images are evaluated. Using multiple-band
filter sets, the intensities of blue and red emitting fluorochromes are reduced. Color images may be reconstructed
from monochrome images. Nevertheless, they may have and shifted and need to be realigned before being
superimposed. Confocal laser scanning microscope (CLSM) presents an advantage mainly for 3D microscopy of
thick specimens. Apart from camera performances, user interface is a key point in image acquisition.Cet article présente une évaluation d'outils développés pour l'acqui sition numérique d'images de
fluorescence. Les filtres double ou triple bande réduisent l'intensité des fluorochromes dont l'émission se situe
dans le rouge et le bleu. L'image couleur d'un marquage multiple peut s'obtenir par combinaison d'images
monochromes, à condition de vérifier et de corriger si nécessaire l'aligne ment en , et . La microscopie
confocale présente un intérêt essentiellement pour l'étude d'échantillons épais et l'analyse 3D à fort
grossissement. Indépendamment des caractéristiques des caméras, l'inter face utilisateur apparaît comme un point
clé dans l'acquisition des images