43 research outputs found

    Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements

    Full text link
    We report, for the first time, a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique which allows parallel measurements at different locations, by combining a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM is calculated by using the spherical wave approximation and makes it possible to produce several diffraction limited laser spots, either aligned or spread over the field of view. To attain fast enough imaging rates, the camera has been used in different acquisition modes, the fastest of which leads to a time resolution of 100 ÎĽ\mus. We qualified the experimental set-up by using solutions of sulforhodamine G in glycerol and demonstrated that the observation volumes are similar to that of a standard confocal set-up. To demonstrate that our mFCS method is suitable for intracellular studies, experiments have been conducted on two stable cell lines: mouse embryonic fibroblasts expressing eGFP-actin and H1299 cells expressing the heat shock factor fusion protein HSF1-eGFP. In the first case we could recover, by analyzing the auto-correlation curves, the diffusion constant of G-actin within the cytoplasm, although we were also sensitive to the complex network of interactions with F-actin. Concerning HSF1, we could clearly observe the modifications of the number of molecules and of the HSF1 dynamics during heat shock

    Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density

    Get PDF
    AbstractHistone macroH2A, which is a subtype of histone H2A, possesses a histone H2A-like portion fused to a relatively long non-histone portion. MacroH2A has been shown to associate preferentially with the inactive X chromosome [1]. To investigate the specificity of this association, the nuclear distribution of macroH2A was compared with that of regular core histones. In normal human female fibroblasts, all anti-histone antibodies that were tested (including anti-macroH2A antibody) preferentially labeled the inactive X chromosome. Moreover, when expressed as green fluorescent protein (GFP) fusions, both histone H2A and macroH2A were concentrated in the Barr body. These data clearly show the presence of a higher density of nucleosomes in the inactive X chromosome. Accordingly, the specificity of the macroH2A association with the inactive X chromosome should be reconsidered. While investigating the role of macroH2A, we found that the proximity of the non-histone region of macroH2A to a promoter could lead to a specific repression of transcription, suggesting that the incorporation of macroH2A into chromatin might help to establish the stable pattern of gene expression in differentiated cells

    Tomographic microscopy

    No full text

    Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells.

    No full text
    International audienceCells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes

    Monitoring the interaction between DNA and a transcription factor (MEF2A) using fluorescence correlation spectroscopy.

    Get PDF
    International audienceFluorescence correlation spectroscopy (FCS) is an analytical method that allows distinguishing different populations of fluorescent probes in solution and provides data on their concentrations and their diffusion coefficients. FCS was used to characterize the interaction of the transcription factor (MEF2A) with its DNA target sequence. The myocyte enhancer factor 2 (MEF2) belongs to the MADS-box family and activates transcription of numerous muscle genes during myogenesis. Measurements were made using TAMRA-labelled oligonucleotide duplexes derived from a wild type (WT) or a mutated MEF2 target gene. Binding of the protein to the WT DNA resulted in significant changes of the diffusion. Specificity of the interaction was confirmed using the mutated DNA. Bound to free probe ratios were determined at different MEF2A concentrations and the apparent equilibrium dissociation constant K(D) for the full-length MEF2A was estimated

    Data reproducibility in fluorescence image analysis.

    No full text
    International audienceFluorescence image analysis provides quantitative data on fluorescence in situ hybridization signals (FISH), immunofluorescence labelings, Green Fluorescent Protein (GFP) expression and microarrays. It is a valuable tool for decision making in the fields of biology and medicine. The aim of this study was to evaluate the reproducibility of fluorescence intensity measurements and standardization when acquisitions are performed under various but well defined conditions. Fluorescent intensity of standard beads (Inspeck series, Molecular Probes) was repeatedly measured using an image analyzer and automated procedures. Images were acquired using several integration times and neutral filter sets. A standardization procedure was used for expressing the data in a same unit: data were multiplied by the light attenuation factor and were divided by the CCD integration times. Results show that 1) standardization is possible 2) accurate and reliable fluorescence measurements can be obtained and 3) specimens showing large differences in fluorescence intensity can be objectively compared. Moreover fluorescent test slides including fluorochrome solutions and altuglas slides were tested for shading correction and as overall test systems
    corecore