118 research outputs found

    The depth of the shower maximum of air showers measured with AERA

    Get PDF
    The Auger Engineering Radio Array (AERA) is currently the largest array of radio antennas for the detection of cosmic rays, spanning an area of 17 km2 with 153 radio antennas, measuring in the energy range from 1017.0 to 1019.0 eV. It detects the radio emission of extensive air showers produced by cosmic rays in the 30 − 80 MHz band. The cosmic-ray mass composition is a crucial piece of information in determining the sources of cosmic rays and their acceleration mechanisms. The depth of the shower maximum, Xmax, a probe for mass composition can be determined with a likelihood analysis that compares the measured radio-emission footprint on the ground to an ensemble of footprints from CORSIKA/CoREAS Monte-Carlo air shower simulations. These simulations are also used to determine the resolution of the method and to validate the reconstruction by identifying and correcting for systematic uncertainties. We will present the method for the reconstruction of the depth of the shower maximum, achieving a resolution of up to 15 g/cm2, show compatibility with the independent fluorescence detector reconstruction measured on an event-by-event basis, and show that the data taken over the past seven years with AERA shows a light cosmic-ray mass composition reconstruction in the energy range from 1017.5 to 1018.8 eV

    The 2021 Open-Data release by the Pierre Auger Collaboration

    Get PDF
    The Pierre Auger Observatory is used to study the extensive air-showers produced by cosmic rays above 1017 eV. The Observatory is operated by a Collaboration of about 400 scientists, engineers, technicians and students from more than 90 institutions in 18 countries. The Collaboration is committed to the public release of their data for the purpose of re-use by a wide community including professional scientists, in educational and outreach initiatives, and by citizen scientists. The Open Access Data for 2021 comprises 10% of the samples used for results reported at the Madison ICRC 2019, amounting to over 20000 showers measured with the surface-detector array and over 3000 showers recorded simultaneously by the surface and fluorescence detectors. Data are available in pseudo-raw (JSON) format with summary CSV file containing the reconstructed parameters. A dedicated website is used to host the datasets that are available for download. Their detailed description, along with auxiliary information needed for data analysis, is given. An online event display is also available. Simplified codes derived from those used for published analyses are provided by means of Python notebooks prepared to guide the reader to an understanding of the physics results. Here we describe the Open Access data, discuss the notebooks available and show material accessible to the user at https://opendata.auger.org/

    Deep-learning based reconstruction of the shower maximum Xmax using the water-Cherenkov detectors of the Pierre Auger Observatory

    Get PDF
    The atmospheric depth of the air shower maximum Xmax is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of Xmax are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of Xmax from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of Xmax. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed Xmax using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than 25 g/cm2 at energies above 2×1019 eV

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower Universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼ 0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1–10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy

    Combined Search for UHE Neutrinos from Binary Black Hole Mergers with the Pierre Auger Observatory

    Get PDF
    We present searches for ultra-high energy (UHE) neutrinos (> 0.1 EeV) with the Pierre Auger Observatory, following up binary black hole (BBH) mergers detected by the LIGO and Virgo detectors via gravitational waves (GWs). In this work, the so-far published BBH mergers are combined as standard candles with a hypothetical isotropic UHE neutrino luminosity L(t − t0) as a function of the time after the respective merger, t − t0. The UHE neutrino emission spectrum is assumed to follow a power law distribution ∝ Ev−2. Using these assumptions, L(t − t0) is probed, taking into account the instantaneous effective area of the Pierre Auger Observatory to UHE neutrinos and the 3D sky localizations of the sources. No UHE neutrino candidates have been found and upper limits on L(t − t0) are obtained for the hypothetical cases of emissions lasting 24 hours and 60 days after the merger, respectively. The corresponding upper limit on the total energy per source emitted in UHE neutrinos does not depend on the emission duration and demonstrates the competitiveness of the Pierre Auger Observatory with dedicated neutrino telescopes

    Follow-up Search for UHE Photons from Gravitational Wave Sources with the Pierre Auger Observatory

    Get PDF
    Multimessenger astronomy has become increasingly important during the past decade. Some astronomical objects have already been successfully observed in the light of multiple messenger signals, allowing for a much deeper understanding of their physical properties. The Pierre Auger Observatory has taken part in multimessenger astronomy with an exhaustive exploration of the ultra-high-energy sky. In this contribution, for the first time, a search for UHE photons from the sources of gravitational waves is presented. Interactions with the cosmic background radiation fields are expected to attenuate any possible flux of ultra-high-energy photons from distant sources and a non-negligible background of air shower events with hadronic origin makes an unambiguous identification of primary photons a challenging task. In the analysis presented here, a selection strategy is applied to both GW sources and air shower events aiming to provide maximum sensitivity to a possible photon signal. At the same time, a window is kept open for hypothetical new-physics processes, which might allow for much larger interaction lengths of photons in the extragalactic medium. Preliminary results on the UHE photon fluence from a selection of GW sources, including the binary neutron star merger GW170817 are presented

    A combined fit of energy spectrum, shower depth distribution and arrival directions to constrain astrophysical models of UHECR sources

    Get PDF
    The combined fit of the measured energy spectrum and distribution of depths of shower maximum of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical scenarios with homogeneous source distributions. Further measurements show that the cosmic-ray arrival directions agree better with the directions and fluxes of catalogs of starburst galaxies and active galactic nuclei than with isotropy. Here, we present a novel combination of both analyses. For that, a three-dimensional universe model containing a nearby source population and a homogeneous background source distribution is built, and its parameters are adapted using a combined fit of the energy spectrum, depth of shower maximum distribution and energy-dependent arrival directions. The model takes into account a symmetric magnetic field blurring, source evolution and interactions during propagation. We use simulated data, which resemble measurements of the Pierre Auger Observatory, to evaluate the method’s sensitivity. With this, we are able to verify that the source parameters as well as the fraction of events from the nearby source population and the size of the magnetic field blurring are determined correctly, and that the data is described by the fitted model including the catalog sources with their respective fluxes and three-dimensional positions. We demonstrate that by combining all three measurements we reach the sensitivity necessary to discriminate between the catalogs of starburst galaxies and active galactic nuclei

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF
    The Auger Muons and Infill for the Ground Array (AMIGA) is an enhancement of the Pierre Auger Observatory, whose purpose is to lower the energy threshold of the observatory down to 1016.5 eV, and to measure the muonic content of air showers directly. These measurements will significantly contribute to the determination of primary particle masses in the range between the second knee and the ankle, to the study of hadronic interaction models with air showers, and, in turn, to the understanding of the muon puzzle. The underground muon detector of AMIGA is concomitant to two triangular grids of water-Cherenkov stations with spacings of 433 and 750 m; each grid position is equipped with a 30 m2 plastic scintillator buried at 2.3 m depth. After the engineering array completion in early 2018 and general improvements to the design, the production phase commenced. In this work, we report on the status of the underground muon detector, the progress of its deployment, and the performance achieved after two years of operation. The detector construction is foreseen to finish by mid-2022

    Indication of a mass-dependent anisotropy above 1018.7 eV in the hybrid data of the Pierre Auger Observatory

    Get PDF
    We test the hypothesis of an anisotropy laying along the galactic plane which depends on the mass of primary cosmic-rays. The sensitivity to primary mass is provided by the depth of shower maximum, Xmax, from hybrid events measured at the Pierre Auger Observatory. The 14 years of available data are split into on- and off-plane regions using the galactic latitude of each event to form two distributions in Xmax, which are compared using the Anderson-Darling 2-samples test. A scan over a subset of the data is used to select an optimal threshold energy of 1018.7 eV and a galactic latitude splitting at |b| = 30◦, which are then set as a prescription for the remaining data. With these thresholds, the distribution of Xmax from the on-plane region is found to have a 9.1 ± 1.6+−2212 g/cm2 shallower mean and a 5.9 ± 2.1+−3255 g/cm2 narrower width than that of the off-plane region. These differences are as such to indicate that the mean mass of primary particles arriving from the on-plane region is greater than that of those coming from the off-plane region. Monte-Carlo studies yield a 4.4 σ post-penalization statistical significance for the independent data. Including the scanned data results in a 4.9+−1145 σ post-penalization statistical significance, where the uncertainties are of systematic origin. Accounting for systematic uncertainties leads to an indication for anisotropy in mass composition above 1018.7 eV at a confidence level of 3.3 σ. The anisotropy is observed independently at each of the four fluorescence telescope sites. Interpretations of possible causes of the observed effect are discussed

    Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory

    Get PDF
    Lorentz Invariance (LI) implies that the space-time structure is the same for all observers. On the other hand, various quantum gravity theories suggest that it may be violated when approaching the Planck scale. At extreme energies, like those available in the collision of Ultra-High Energy Cosmic Rays (UHECRs) with atmosphere nuclei, one should also expect a change in the interactions due to Lorentz Invariance Violation (LIV). In this work, the effects of LIV on the development of Extensive Air Showers (EAS) have been considered. After having introduced LIV as a perturbation term in the single-particle dispersion relation, a library of simulated showers with different energies, primary particles and LIV strengths has been produced. Possible LIV has been studied using the muon content of air showers measured at the Pierre Auger Observatory. Limits on LIV parameters have been derived from a comparison between the Monte Carlo expectations and muon fluctuation measurements from the Pierre Auger Observatory
    corecore