5 research outputs found

    Nanoscale transient polarization gratings

    Full text link
    We present the generation of transient polarization gratings at the nanoscale, achieved using a tailored accelerator configuration of the FERMI free electron laser. We demonstrate the capabilities of such a transient polarization grating by comparing its induced dynamics with the ones triggered by a more conventional intensity grating on a thin film ferrimagnetic alloy. While the signal of the intensity grating is dominated by the thermoelastic response of the system, such a contribution is suppressed in the case of the polarization grating. This exposes helicity-dependent magnetization dynamics that have so-far remained hidden under the large thermally driven response. We anticipate nanoscale transient polarization gratings to become useful for the study of any physical, chemical and biological systems possessing chiral symmetry

    Generation and Measurement of Intense Few-Femtosecond Superradiant Extreme-Ultraviolet Free-Electron Laser Pulses

    Get PDF
    Free-electron lasers producing ultrashort pulses with high peak power promise to extend ultrafast non-linear spectroscopic techniques into the extreme-ultraviolet–X-ray regime. Key aspects are the synchronization between pump and probe, and the control of the pulse properties (duration, intensity and coherence). Externally seeded free-electron lasers produce coherent pulses that can be synchronized with femtosecond accuracy. An important goal is to shorten the pulse duration, but the simple approach of shortening the seed is not sufficient because of the finite-gain bandwidth of the conversion process. An alternative is the amplification of a soliton in a multistage, superradiant cascade: here, we demonstrate the generation of few-femtosecond extreme-ultraviolet pulses, whose duration we measure by autocorrelation. We achieve pulses four times shorter, and with a higher peak power, than in the standard high-gain harmonic generation mode and we prove that the pulse duration matches the Fourier transform limit of the spectral intensity distribution

    Studying ultrafast Rabi dynamics with a short-wavelength seeded free-electron laser

    Get PDF
    Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field. They are ubiquitous in physics with applications in different areas such as photonics, nano-electronics, electron microscopy, and quantum information. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interaction within the rotating wave approximation\cite. Although intense nanometer-wavelength light-sources have been available for more than a decade, Rabi dynamics at such short wavelengths have not been observed directly. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser can drive Rabi oscillations between the ground state and an excited state in helium atoms. The measured photoemission signal revealed an Autler-Townes doublet as well as an avoided crossing, phenomena that are both trademarks of quantum optics. Using theoretical analyses that go beyond the strong-field approximation, we found that the ultrafast build-up of the doublet structure follows from a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond and few-femtosecond extreme-ultraviolet pulses, our results offer opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers
    corecore