9,029 research outputs found

    The Epstein-Glaser causal approach to the Light-Front QED4_{4}. I: Free theory

    Full text link
    In this work we present the study of light-front field theories in the realm of axiomatic theory. It is known that when one uses the light-cone gauge pathological poles (k+)−n(k^{+}) ^{-n} arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use rigorous mathematical machinery of distributions combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how analytic representation for propagators arises by requiring general physical properties in the framework of Wightman's formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar, fermionic fields and for the dynamical components of the electromagnetic field. In conclusion, we introduce the Epstein-Glaser causal method in order to have a mathematical rigorous treatment of the free propagators of the theory, allowing us to discuss the general treatment for propagators of the type (k+)−n(k^{+}) ^{-n}. Moreover, we show that at given conditions our results reproduce known prescriptions in the literature.Comment: 34 pages, v2 matching the published versio

    Causal approach for the electron-positron scattering in Generalized Quantum Electrodynamics

    Full text link
    In this paper we study the generalized electrodynamics contribution for the electron-positron scattering process, e−e+→e−e+e^{-}e^{+}\rightarrow e^{-}e^{+}, the Bhabha scattering. Within the framework of the standard model, for energies larger when compared to the electron mass, we calculate the cross section expression for the scattering process. This quantity is usually calculated in the framework of the Maxwell electrodynamics and, by phenomenological reasons, corrected by a cut-off parameter. On the other hand, by considering the generalized electrodynamics instead of Maxwell's, we can show that the effects played by the Podolsky mass is actually a natural cut-off parameter for this scattering process. Furthermore, by means of experimental data of Bhabha scattering we will estimate its lower bound value. Nevertheless, in order to have a mathematically well defined description of our study we shall present our discussion in the framework of the Epstein-Glaser causal theory.Comment: 24 pages, V2 to match published versio

    Multiparameter Quantum Metrology of Incoherent Point Sources: Towards Realistic Superresolution

    Full text link
    We establish the multiparameter quantum Cram\'er-Rao bound for simultaneously estimating the centroid, the separation, and the relative intensities of two incoherent optical point sources using alinear imaging system. For equally bright sources, the Cram\'er-Rao bound is independent of the source separation, which confirms that the Rayleigh resolution limit is just an artifact of the conventional direct imaging and can be overcome with an adequate strategy. For the general case of unequally bright sources, the amount of information one can gain about the separation falls to zero, but we show that there is always a quadratic improvement in an optimal detection in comparison with the intensity measurements. This advantage can be of utmost important in realistic scenarios, such as observational astronomy.Comment: 5 pages, 3 figures. Comments welcome

    Ghost-gluon coupling, power corrections and ΛMSˉ\Lambda_{\bar{MS}} from twisted-mass lattice QCD at Nf=2N_f=2

    Full text link
    A non-perturbative calculation of the ghost-gluon running QCD coupling constant is performed using Nf=2N_f=2 twisted-mass dynamical fermions. The extraction of ΛMSˉ\Lambda_{\bar{MS}} in the chiral limit reveals the presence of a non-perturbative OPE contribution that is assumed to be dominated by a dimension-two \VEV{A^2} condensate. In this contest a novel method for calibrating the lattice spacing in lattice simulations is presented.Comment: 7 pages, 4 figures, XXVIII International Symposium on Lattice Field Theory 201
    • …
    corecore