372 research outputs found

    Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b quarks final state with boosted topology

    Get PDF

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101  fb−1^{-1} of proton-proton collisions delivered by the LHC at s\sqrt{s} =13  TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at s\sqrt{s} =8  TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3  fb−1^{-1}, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models

    Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at s \sqrt{\mathrm{s}} =13 TeV

    Get PDF

    Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

    Get PDF
    Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width - related to its lifetime - is an important parameter. One way to determine this quantity is by measuring its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here, we report evidence for such off-shell contributions to the production cross section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at 95% confidence level. The scenario with no off-shell contribution is excluded at a p-value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as Γ\GammaH_H=3.2−1.7+2.4^{+2.4}_{−1.7}MeV, in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs

    Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at s√ = 13 TeV

    Get PDF
    A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions at s√ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions (B ) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are B (t → Hu) < 0.079 (0.11)% and B (t → Hc) < 0.094 (0.086)%

    Search for new particles in an extended Higgs sector with four b quarks in the final state at √s = 13 TeV

    Get PDF

    Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search is presented for a right-handed W boson (WR) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or ΌΌ) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb−1. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of WR production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses mN equal to half the WR mass mWR (mN = 0.2 TeV), mWR is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the WR mass to date

    Search for electroweak production of charginos and neutralinos at √s = 13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

    Get PDF

    Inclusive nonresonant multilepton probes of new phenomena at s\sqrt{s}= 13 TeV

    Get PDF
    An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying τ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb−1^{-1} of proton-proton collisions at s\sqrt{s}= 13 TeV collected by the CMS experiment at the LHC in 2016–2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845–1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vectorlike τ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125–150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12–1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vectorlike doublet model, these constraints are the most stringent to date. For the vectorlike singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations

    Observation of the Bc+_\mathrm{c}^+ Meson in Pb-Pb and pp Collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV and Measurement of its Nuclear Modification Factor

    Get PDF
    The Bc+_\mathrm{c}^+ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the Bc+_\mathrm{c}^+ meson in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV , via the Bc+_\mathrm{c}^+ → (J/ψ → ÎŒ+^+Ό−^−)ÎŒ+^+ΜΌ_ÎŒ decay. The Bc+_\mathrm{c}^+ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The Bc+_\mathrm{c}^+meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma
    • 

    corecore