15,604 research outputs found
Plume radiation program
Computer program determines the radiant flux to the base region of a real gas system with an axisymmetric geometry and any axisymmetric property distribution
Phenolics, depsides and triterpenes from the chilean lichen pseudocyphellaria nudata (zahlbr.) D.J. Galloway
Indexación: ScieloThe lichen Pseudocyphellaria nudata is a species endemic to southern South América. From the lichen tallus, methyl orsellinate, 2-methoxy-3,6-dimethyl-4-hydroxybenzaldehyde, methyl-evernate, tenuiorin, hopan-6ß,22-diol and hopan-6α,76,22-triol were isolated and identified as the main lichen constituents. This is the first report of the occurrence of 2-methoxy-3,6-dimethyl-4-hydroxybenzaldehyde in lichens.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=s0717-97072008000300017&nrm=is
Reward modulates spatial neglect
Copyright @ 2012 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 85 reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel University Open Access Publishing Fund.BACKGROUND: Reward has been shown to affect attention in healthy individuals, but there have been no studies addressing whether reward influences attentional impairments in patients with focal brain damage. METHODS: Using two novel variants of a widely-used clinical cancellation task, we assessed whether reward modulated impaired attention in 10 individuals with left neglect secondary to right hemisphere stroke. RESULTS: Reward exposure significantly reduced neglect, as measured by total targets found, left-sided targets found and centre of cancellation, across the patient group. Lesion analysis showed that lack of response to reward was associated with damage to the ipsilateral striatum. CONCLUSIONS: This is the first experimental evidence that reward can modulate attentional impairments following brain damage. These results have significant implications for the development of behavioural and pharmacological therapies for patients with attentional disorders.PM is supported by a HEFCE Clinical Senior Lectureship Award and this research was funded by grants from the UK Academy of Medical Sciences/Wellcome Trust and the NIHR Biomedical Research Centre at Imperial College London. DS is supported by a grant from the UK Medical Research Council (89631). CR is supported by a Brunel Research Initiative Award (BRIEF) and a scientific bursary from the Bial foundation, Portugal
Geographic body size variation in ectotherms: effects of seasonality on an anuran from the southern temperate forest
Indexación: Web of Science; Scopus.Background: Body size variation has played a central role in biogeographical research, however, most studies have aimed to describe trends rather than search for underlying mechanisms. In order to provide a more comprehensive understanding of the causes of intra-specific body size variation in ectotherms, we evaluated eight hypotheses proposed in the literature to account for geographical body size variation using the Darwin's frog (Rhinoderma darwinii), an anuran species widely distributed in the temperate forests of South America. Each of the evaluated hypotheses predicted a specific relationship between body size and environmental variables. The level of support for each of these hypotheses was assessed using an information-theoretic approach and based on data from 1015 adult frogs obtained from 14 sites across the entire distributional range of the species.
Results: There was strong evidence favouring a single model comprising temperature seasonality as the predictor variable. Larger body sizes were found in areas of greater seasonality, giving support to the "starvation resistance" hypothesis. Considering the known role of temperature on ectothermic metabolism, however, we formulated a new, non-exclusive hypothesis, termed "hibernation hypothesis": greater seasonality is expected to drive larger body size, since metabolic rate is reduced further and longer during colder, longer winters, leading to decreased energy depletion during hibernation, improved survival and increased longevity (and hence growth). Supporting this, a higher post-hibernation body condition in animals from areas of greater seasonality was found.
Conclusions: Despite largely recognized effects of temperature on metabolic rate in ectotherms, its importance in determining body size in a gradient of seasonality has been largely overlooked so far. Based on our results, we present and discuss an alternative mechanism, the "hibernation hypothesis", underlying geographical body size variation, which can be helpful to improve our understanding of biogeographical patterns in ectotherms.https://frontiersinzoology.biomedcentral.com/articles/10.1186/s12983-015-0132-
Synchronization and oscillatory dynamics in heterogeneous mutually inhibited neurons
We study some mechanisms responsible for synchronous oscillations and loss of
synchrony at physiologically relevant frequencies (10-200 Hz) in a network of
heterogeneous inhibitory neurons. We focus on the factors that determine the
level of synchrony and frequency of the network response, as well as the
effects of mild heterogeneity on network dynamics. With mild heterogeneity,
synchrony is never perfect and is relatively fragile. In addition, the effects
of inhibition are more complex in mildly heterogeneous networks than in
homogeneous ones. In the former, synchrony is broken in two distinct ways,
depending on the ratio of the synaptic decay time to the period of repetitive
action potentials (), where can be determined either from the
network or from a single, self-inhibiting neuron. With ,
corresponding to large applied current, small synaptic strength or large
synaptic decay time, the effects of inhibition are largely tonic and
heterogeneous neurons spike relatively independently. With ,
synchrony breaks when faster cells begin to suppress their less excitable
neighbors; cells that fire remain nearly synchronous. We show numerically that
the behavior of mildly heterogeneous networks can be related to the behavior of
single, self-inhibiting cells, which can be studied analytically.Comment: 17 pages, 6 figures, Kluwer.sty. Journal of Compuational Neuroscience
(in press). Originally submitted to the neuro-sys archive which was never
publicly announced (was 9802001
- …