26 research outputs found

    Assessment of Liquefaction Susceptibility of Geological Units in the Area of Gulf of Corinth, Greece

    Get PDF
    The coastal area of Gulf of Corinth is characterized as medium to high seismicity zone since devastating earthquakes occurred during a 2500 years period. One of the most characteristic events is the 373 B.C. Eliki earthquake that triggered severe secondary effects including soil liquefaction and large scale landslides. The basic aim of this paper is the compilation of a map regarding the liquefaction susceptibility in the coastal area of Gulf of Corinth, Central Greece. In order to achieve this, we used data regarding the age and depositional process of sediments the value of peak ground acceleration (PGA) and the occurrence of historical liquefaction manifestation within the area. In particular, surficial geologic maps at 1:50.000 scale, published by the Institute of Geology and Mineral Exploration of Greece, were used as baseline layer for mapping Quaternary sediments and past liquefaction sites were delineated, based on information provided by the web site of Database of Historical Liquefaction Occurrences in the broader Aegean region, DALO (http://users.auth.gr/gpapatha/dalo.htm )

    Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying

    Get PDF
    AbstractEarthquake occurrence is ultimately controlled by tectonic stress load. Nevertheless, the 2019, Mw = 4.9, Le Teil earthquake in southern France occurred in an area where strain rates are relatively low. Human operations can produce increases in stress load and degradation of strength on nearby active faults, which raises the potential for failure. Here we present estimates of the rupture geometry and source directivity of the Le Teil earthquake based on differential synthetic aperture radar interferometry and seismic data. We find that almost two centuries of mass removal at a nearby cement quarry likely provided the required stress change to hasten the occurrence of the Le Teil earthquake by more than 18,000 years. We suggest that further mass removal in the area might lead to even stronger earthquakes, by activating deeper sectors of the same fault plane

    The large tsunami of 26 December 2004: Field observations and eyewitnesses accounts from Sri Lanka, Maldives Is. and Thailand

    Get PDF
    Abstract Post-event field surveys were conducted and measurements were taken in Sri Lanka and Maldives about two weeks after the catastrophic Indian Ocean tsunami of 26 December 2004. The measurements taken were cross-checked after interviewing with local people. In the southwest, south and east coastal zones of Sri Lanka maximum water levels ranging from h = 3 m to h = 11 m a.m.s.l. were estimated. The highest values observed were in the south of the island: Galle h ∼ 10 m, Hambantota h ∼ 11m. Maximum inundation of d ∼ 2 km was observed in Hambantota. The heavy destruction and thousands of victims caused in coastal communities, buildings and infrastructure, like railways and bridges, is attributed not only to physical parameters, like the strength of the tsunami hydrodynamic flow, coastal geomorphology and the wave erosional action in soil, but also to anthropogenic factors including the increased vulnerability of the non-RC buildings and the high population density. Local people usually described the tsunami as a series of three main waves. The leading wave phase was only a silent sea level rise of h ≤ 1.5 m and d ≤ 150 m, while the second wave was the strongest one. The first two waves occurred between 09:00 and 09:30 local time, depending on the locality. It is well documented that near Galle, southern part, the strong wave arrived at 09:25:30. In the west coast the third wave was a late arrival which possibly represents reflection phases. In Maldives, three waves were also reported to arrive between 09:00 and 09:30 local time. Maximum water level was only h ∼ 3 m in Laamu Atoll, which is interpreted by the wave amplitude damping by the coral reef to the east of the island complex as well as to that the tsunami did not arrived at high tide time. Damage was observed in several islands of Maldives but this was minimal as compared to the heavy destruction observed in Sri Lanka. About 25 Greek eyewitnesses, who happened to experience the tsunami attack in Padong and Blue Lagoon Port of Phuket island as well as in Maya Bay, Phi-Phi islands, Thailand, were interviewed on the basis of a standard questionnaire. The first sea motion was a retreat of at least 100 m. Then, two main waves arrived, the first being the strong one occurring at about 09:55–10:05 local time, with h ∼ 6m in Padong causing significant destruction and human victims. The collected information clearly indicates that the tsunami propagated as the leading crest wave to the west side, e.g. in Sri Lanka and Maldives, and as the leading trough wave to the east, e.g. in Thailand

    Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye

    Get PDF
    An earthquake doublet (Mw 7.8 and Mw 7.6) occurred on the East Anatolian Fault Zone (EAFZ) on February 6th, 2023. The events produced significant ground motions and caused major impacts to life and infrastructure throughout SE Türkiye and NW Syria. Here we show the results of earthquake relocations of the first 11 days of aftershocks and rupture models for both events inferred from the kinematic inversion of HR-GNSS and strong motion data considering a multi-fault, 3D geometry. We find that the first event nucleated on a previously unmapped fault before transitioning to the East Anatolian Fault (EAF) rupturing for ~350 km and that the second event ruptured the Sürgü fault for ~160 km. Maximum rupture speeds were estimated to be 3.2 km/s for the Mw 7.8 event. For the Mw 7.6 earthquake, we find super-shear rupture at 4.8 km/s westward but sub-shear eastward rupture at 2.8 km/s. Peak slip for both events were as large as ~8m and ~6m, respectively

    Rock-falls and liquefaction related phenomena triggered by the June 8, 2008, Mw=6.4 earthquake in NW Peloponnesus, Greece

    No full text
    A strong earthquake (Mw=6.4) occurred in NW Peloponnesus, Greece, on June 8, 2008. The focal mechanism shows a transcurrent kinematics, and based on aftershocks distribution the causative fault is a dextral strike-slip NNE-SSW trending structure. The shock generated severe secondary environmental effects like rock-falls and liquefaction phenomena inducing structural damages and ground failures mainly along the fault strike. Evidence of liquefaction was observed in the area of Kato Achaia and Roupakia villages, while rock-falls were triggered mainly close to the epicentre at the foothills of the Skolis Mountain. Based on a quantitative methodological approach, the ground deformation and failures generated by the event have been investigated. In particular, based on an immediate post-event survey, we mapped in detail the distribution of the earthquake induced ground failures, defining the areas prone to liquefaction and their associated potential. Moreover, a rock-fall hazard zonation in the area of Skolis Mountain has been developed based on the shadow angle approach, confirming the validity of the safety run-out distance models

    Rock-falls and liquefaction related phenomena triggered by the June 8, 2008, Mw=6.4 earthquake in NW Peloponnesus, Greece

    No full text
    A strong earthquake (Mw=6.4) occurred in NW Peloponnesus, Greece, on June 8, 2008. The focal mechanism shows a transcurrent kinematics, and based on aftershocks distribution the causative fault is a dextral strike-slip NNE-SSW trending structure. The shock generated severe secondary environmental effects like rock-falls and liquefaction phenomena inducing structural damages and ground failures mainly along the fault strike. Evidence of liquefaction was observed in the area of Kato Achaia and Roupakia villages, while rock-falls were triggered mainly close to the epicentre at the foothills of the Skolis Mountain. Based on a quantitative methodological approach, the ground deformation and failures generated by the event have been investigated. In particular, based on an immediate post-event survey, we mapped in detail the distribution of the earthquake-induced ground failures, defining the areas prone to liquefaction and their associated potential. Moreover, a rock-fall hazard zonation in the area of Skolis Mountain has been developed based on the shadow angle approach, confirming the validity of the safety run-out distance models
    corecore