10 research outputs found

    Urinary Transforming Growth Factor-beta 1 as a marker of response to immunosuppressive treatment, in patients with crescentic nephritis

    Get PDF
    BACKGROUND: Crescentic nephritis is characterized by formation of cellular crescents that soon become fibrotic and result in irreversible damage, unless an effective immunosuppressive therapy is rapidly commenced. TGF-β(1 )is involved in the development of crescents through various pathways. The aim of this study was to identify whether the determination of urinary TGF-β(1 )levels in patients with crescentic nephritis could be used as a marker of response to treatment. METHODS: Fifteen patients with crescentic nephritis were included in the study. The renal expression of TGF-β(1 )was estimated in biopsy sections by immunohistochemistry and urinary TGF-β(1 )levels were determined by quantitative sandwich enzyme immunoassay (EIA). TGF-β(1 )levels were determined at the time of renal biopsy, before the initiation of immunosuppressive treatment (corticosteroids, cyclophosphamide and plasma exchange). Twelve patients with other types of proliferative glomerulonephritis and ten healthy subjects were used as controls. RESULTS: Improvement of renal function with immunosuppressive therapy was observed in 6 and stabilization in 4 patients (serum creatinine from 3.2 ± 1.5 to 1.4 ± 0.1 mg/dl and from 4.4 ± 1.2 to 4.1 ± 0.6 mg/dl, respectively). In 5 patients, with severe impairment of renal function who started on dialysis, no improvement was noted. The main histological feature differentiating these 5 patients from others with improved or stabilized renal function was the percentage patients with poor response to treatment were the percentage of glomeruli with crescents and the presence of ruptured Bowman's capsule and glomerular necrosis. Urinary TGF-β(1 )levels were significantly higher in patients who showed no improvement of renal function with immunosuppressive therapy (930 ± 126 ng/24 h vs. 376 ± 84 ng/24 h, p < 0.01). TGF-β(1 )was identified in crescents and tubular epithelial cells, whereas a significant correlation of TGF-β(1 )immunostaining with the presence of fibrocellular cresents was observed (r = 0.531, p < 0,05). CONCLUSION: Increased TGF-β(1 )renal expression and urinary excretion that is related to the response to immunosuppressive therapy was observed in patients with crescentic nephritis. Evaluation of urinary TGF-β(1 )levels may be proved a useful marker of clinical outcome in patients with crescentic nephritis

    Hydrogen peroxide signals E. coli phagocytosis by human polymorphonuclear cells; up-stream and down-stream pathway

    Get PDF
    AbstractHydrogen peroxide (Η2Ο2) is produced during a variety of cellular procedures. In this paper, the regulatory role of Η2Ο2, in Escherichia coli phagocytosis by the human polymorphonuclears, was investigated. White blood cells were incubated with dihydrorhodamine (DHR) in order to study H2O2 synthesis and E. coli-FITC to study phagocytosis. Flow cytometry revealed increased synthesis of H2O2 in polymorphonuclears which incorporated E. coli-FITC. The blocking of H2O2 synthesis by specific inhibitors, N-ethylmaleimide (ΝΕΜ) for NADPH oxidase and diethyldithiocarbamate (DDC) for superoxide dismutase (SOD), decreased E. coli phagocytosis, as well. Immunoblot analysis of white blood cell protein extracts revealed that the blocking of NADPH oxidase and SOD decreased ERK-1/2 phosphorylation, while it had no effect on JNK and p38. Confocal microscopy showed that phosphorylation of MAPKs and phagocytosis solely occur in the polymorphonuclear and not in mononuclear cells. The use of specific MAPKs inhibitors showed that all of them are necessary for phagocytosis, but only phospho-p38 affects H2O2 synthesis. The blocking of JNK phosphorylation, in the presence of E. coli, evoked a further decrease of cytoplasmic p47 thus increasing its translocation onto the plasma membrane for the assembly of NADPH oxidase. It appears that newly synthesised H2O2 invigorates the phosphorylation and action of ERK-1/2 in E. coli phagocytosis, while phospho-JNK and phospho-p38 appear to regulate H2O2 production

    Innate immunity in insects: surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes

    No full text
    Phagocytosis, melanization and nodulation in insects depend on phenoloxidase (PO) activity. In this report, we demonstrated that these three processes appear to be also dependent on dopa decarboxylase (Ddc) activity. Using flow cytometry, RNA interference, immunoprecipitation and immunofluorescence, we demonstrated the constitutive expression of Ddc and its strong association with the haemocyte surface, in the medfly Ceratitis capitata. In addition, we showed that Escherichia coli phagocytosis is markedly blocked by small interfering RNA (siRNA) for Ddc, antibodies against Ddc, as well as by inhibitors of Ddc activity, namely carbidopa and benzerazide, convincingly revealing the involvement of Ddc activity in phagocytosis. By contrast, latex beads and lipopolysaccharide (LPS) did not require Ddc activity for their uptake. It was also shown that nodulation and melanization processes depend on Ddc activation, because antibodies against Ddc and inhibitors of Ddc activity prevent haemocyte aggregation and melanization in the presence of excess E. coli. Therefore, phagocytosis, melanization and nodulation depend on haemocyte-surface-associated PO and Ddc. These three unrelated mechanisms are based on tyrosine metabolism and share a number of substrates and enzymes; however, they appear to be distinct. Phagocytosis and nodulation depend on dopamine-derived metabolite(s), not including the eumelanin pathway, whereas melanization depends exclusively on the eumelanin pathway. It must also be underlined that melanization is not a prerequisite for phagocytosis or nodulation. To our knowledge, the involvement of Ddc, as well as dopa and its metabolites, are novel aspects in the phagocytosis of medfly haemocytes

    A: Localization of TGF-βin a crescent and in tubular epithelial cells (dark brown area) (× 200)

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Urinary Transforming Growth Factor-beta 1 as a marker of response to immunosuppressive treatment, in patients with crescentic nephritis"</p><p>BMC Nephrology 2005;6():16-16.</p><p>Published online 20 Dec 2005</p><p>PMCID:PMC1327665.</p><p>Copyright © 2005 Goumenos et al; licensee BioMed Central Ltd.</p> B: Negative control (× 200)
    corecore