22 research outputs found

    Multilocus Microsatellite Typing (MLMT) of Strains from Turkey and Cyprus Reveals a Novel Monophyletic L. donovani Sensu Lato Group

    Get PDF
    In eastern Mediterranean, leishmaniasis represents a major public health problem with considerable impact on morbidity and potential to spread. Cutaneous leishmaniasis (CL) caused by L. major or L. tropica accounts for most cases in this region although visceral leishmaniasis (VL) caused by L. infantum is also common. New foci of human CL caused by L. donovani complex strains were recently described in Cyprus and Turkey. Herein we analyzed Turkish strains from human CL foci in Çukurova region (north of Cyprus) and a human VL case in Kuşadasi. These were compared to Cypriot strains that were previously typed by Multilocus Enzyme Electrophoresis (MLEE) as L. donovani MON-37. Nevertheless, they were found genetically distinct from MON-37 strains of other regions and therefore their origin remained enigmatic. A population study was performed by Multilocus Microsatellite Typing (MLMT) and the profile of the Turkish strains was compared to previously analyzed L. donovani complex strains. Our results revealed close genetic relationship between Turkish and Cypriot strains, which form a genetically distinct L. infantum monophyletic group, suggesting that Cypriot strains may originate from Turkey. Our analysis indicates that the epidemiology of leishmaniasis in this region is more complicated than originally thought

    The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function

    Full text link

    In vitro activity of 10-deacetylbaccatin III against Leishmania donovani promastigotes and intracellular amastigotes

    No full text
    Current treatments for leishmaniasis are unsatisfactory due to their route of administration, toxicity and expense but, most importantly, to the developed resistance of Leishmania to first-line drugs. Therefore, the identification of new effective targeted drugs is an urgent need. Since many studies have shown that medicinal plants contain compounds active against protozoa we have undertaken a study aiming to determine the antileishmanial activity of the taxoid 10-deacetylbaccatin III, isolated from dried needles and small branches of the European yew tree (Taxus baccata). Interestingly, 10-deacetylbaccatin III was found to selectively inhibit the growth of L donovani intracellular amastigotes within J774 murine macrophages in vitro at nanomolar concentrations with an IC50 value of 70 nM. Concentrations of 10-deacetylbaccatin III as high as 5 μM did not affect J774 murine macrophages whereas 20 nM of taxol, used as a control, was toxic to macrophages. The compound also inhibited the growth of L. donovani promastigotes but at higher concentrations with a maximum level of inhibition of 35%. Taxol inhibited promastigote growth at micromolar concentrations. Comparison of the effect of 10-deacetylbaccatin III to that of taxol on cell cycle progression and cellular morphology showed that their mechanisms of action are different. The 10-deacetylbaccatin III-treated promastigotes were slightly arrested in the G2/M phase whereas taxol-treated cells were blocked in the G2/M phase. In addition 10-deacetylbaccatin III treatment, contrary to taxol, did not affect cellular morphology. © Georg Thieme Verlag KG Stuttgart

    6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: Exploitation of GSK-3 for treating leishmaniasis

    No full text
    Indirubins known to target mammalian cyclin-dependent kinases (CDKs) and glycogen synthase kinase (GSK-3) were tested for their antileishmanial activity. 6-Br-indirubin-3′-oxime (6-BIO), 6-Br-indirubin-3′acetoxime and 6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) were the most potent inhibitors of Leishmania donovani promastigote and amastigote growth (half maximal inhibitory concentration (IC50) values ≤1.2 μM). Since the 6-Br substitution on the indirubin backbone greatly enhances the selectivity for mammalian GSK-3 over CDKs, we identified the leishmanial GSK-3 homologues, a short (LdGSK-3s) and a long one, focusing on LdGSK-3s which is closer to human GSK-3β, for further studies. Kinase assays showed that 5-Me-6-BIO inhibited LdGSK-3s more potently than CRK3 (the CDK1 homologue in Leishmania), whilst 6-BIO was more selective for CRK3. Promastigotes treated with 5-Me-6-BIO accumulated in the S and G2/M cell-cycle phases and underwent apoptosis-like death. Interestingly, these phenotypes were completely reversed in parasites over-expressing LdGSK-3s. This finding strongly supports that LdGSK-3s is: (i) the intracellular target of 5-Me-6-BIO, and (ii) involved in cell-cycle control and in pathways leading to apoptosis-like death. 6-BIO treatment induced a G2/M arrest, consistent with inhibition of CRK3 and apoptosis-like death. These effects were partially reversed in parasites over-expressing LdGSK-3s suggesting that in vivo 6-BIO may also target LdGSK-3s. Molecular docking of 5-Me-6-BIO in CRK3 and 6-BIO in human GSK-3β and LdGSK-3s active sites predict the existence of functional/structural differences that are sufficient to explain the observed difference in their affinity. In conclusion, LdGSK-3s is validated as a potential drug target in Leishmania and could be exploited for the development of selective indirubin-based leishmanicidals. © 2009 Australian Society for Parasitology Inc

    An inhibitor-driven study for enhancing the selectivity of indirubin derivatives towards leishmanial Glycogen Synthase Kinase-3 over leishmanial cdc2-related protein kinase 3

    No full text
    Background: In search of new antiparasitic agents for overcoming the limitations of current leishmaniasis chemotherapy, we have previously shown that 6-bromoindirubin-3'-oxime (6BIO) and several other 6-substituted analogues of indirubin, a naturally occurring bis-indole present in mollusks and plants, displayed reverse selectivity from the respective mammalian kinases, targeting more potently the leishmanial Cyclin-Dependent Kinase-1 (CDK1) homologue [cdc2-related protein kinase 3 (LCRK3)] over leishmanial Glycogen Synthase Kinase-3 (LGSK-3). This reversal of selectivity in Leishmania parasites compared to mammalian cells makes the design of specific indirubin-based LGSK-3 inhibitors difficult. In this context, the identification of compounds bearing specific substitutions that shift indirubin inhibition towards LGSK-3, previously found to be a potential drug target, over LCRK3 is imperative for antileishmanial targeted drug discovery. Methods. A new in-house indirubin library, composed of 35 compounds, initially designed to target mammalian kinases (CDKs, GSK-3), was tested against Leishmania donovani promastigotes and intracellular amastigotes using the Alamar blue assay. Indirubins with antileishmanial activity were tested against LGSK-3 and LCRK3 kinases, purified from homologous expression systems. Flow cytometry (FACS) was used to measure the DNA content for cell-cycle analysis and the mode of cell death. Comparative structural analysis of the involved kinases was then performed using the Szmap algorithm. Results: We have identified 7 new indirubin analogues that are selective inhibitors of LGSK-3 over LCRK3. These new inhibitors were also found to display potent antileishmanial activity with GI50 values of <1.5 μM. Surprisingly, all the compounds that displayed enhanced selectivity towards LGSK-3, were 6BIO analogues bearing an additional 3'-bulky amino substitution, namely a piperazine or pyrrolidine ring. A comparative structural analysis of the two aforementioned leishmanial kinases was subsequently undertaken to explain and rationalize the selectivity trend determined by the in vitro binding assays. Interestingly, the latter analysis showed that selectivity could be correlated with differences in kinase solvation thermo dynamics induced by minor sequence variations of the otherwise highly similar ATP binding pockets. Conclusions: In conclusion, 3'-bulky amino substituted 6-BIO derivatives, which demonstrate enhanced specificity towards LGSK-3, represent a new scaffold for targeted drug development to treat leishmaniasis. © 2014 Efstathiou et al.; licensee BioMed Central Ltd
    corecore