206 research outputs found

    Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields

    Get PDF
    We present the formalism and numerical results for torsional oscillations of relativistic stars endowed with a strong dipole magnetic field. We do a systematic search of parameter space by computing torsional mode frequencies for various values of the harmonic index \ell and for various overtones, using an extended sample of models of compact stars, varying in mass, high-density equation of state and crust model. We show that torsional mode frequencies are sensitive to the crust model if the high-density equation of state is very stiff. In addition, torsional mode frequencies are drastically affected by a dipole magnetic field, if the latter has a strength exceeding roughly 101510^{15}G and we find that the magnetic field effects are sensitive to the adopted crust model. Using our extended numerical results we derive empirical relations for the effect of the magnetic field on torsional modes as well as for the crust thickness. We compare our numerical results to observed frequencies in SGRs and find that certain high-density EoS and mass values are favored over others in the non-magnetized limit. On the other hand, if the magnetic field is strong, then its effect has to be taken into account in attempts to formulate a theory of asteroseismology for magnetars.Comment: 17 pages, 5 figure

    On the Quasi-Periodic Oscillations of Magnetars

    Full text link
    We study torsional Alfv\'en oscillations of magnetars, i.e., neutron stars with a strong magnetic field. We consider the poloidal and toroidal components of the magnetic field and a wide range of equilibrium stellar models. We use a new coordinate system (X,Y), where X=a1sinθX=\sqrt{a_1} \sin \theta, Y=a1cosθY=\sqrt{a_1}\cos \theta and a1a_1 is the radial component of the magnetic field. In this coordinate system, the 1+2-dimensional evolution equation describing the quasi-periodic oscillations, QPOs, see Sotani et al. (2007), is reduced to a 1+1-dimensional equation, where the perturbations propagate only along the Y-axis. We solve the 1+1-dimensional equation for different boundary conditions and open magnetic field lines, i.e., magnetic field lines that reach the surface and there match up with the exterior dipole magnetic field, as well as closed magnetic lines, i.e., magnetic lines that never reach the stellar surface. For the open field lines, we find two families of QPOs frequencies; a family of "lower" QPOs frequencies which is located near the X-axis and a family of "upper" frequencies located near the Y-axis. According to Levin (2007), the fundamental frequencies of these two families can be interpreted as the turning points of a continuous spectrum. We find that the upper frequencies are constant multiples of the lower frequencies with a constant equaling 2n+1. For the closed lines, the corresponding factor is n+1 . By these relations, we can explain both the lower and the higher observed frequencies in SGR 1806-20 and SGR 1900+14.Comment: 8 pages, 7 figure

    Neutron star mass-radius constraints using the high-frequency QPOs of GRB 200415A

    Full text link
    Quasi-periodic oscillations (QPOs) observed in a giant flare of a strongly magnetized neutron star (magnetar), are carrying crucial information for extracting the neutron star properties. The aim of the study is to constrain the mass and radius of the neutron star model for GRB 200415A, by identifying the observed QPOs with the crustal torsional oscillations together with the experimental constraints on the nuclear matter properties. The frequencies of the crustal torsional oscillations are determined by solving the eigenvalue problem with the Cowling approximation, assuming a magnetic field of about 101510^{15}G. We find that the observed QPOs can be identified with several overtones of crustal oscillations, for carefully selected combinations of the nuclear saturation parameters. Thus, we can inversely constrain the neutron star mass and radius for GRB 200415A by comparing them to the values of nuclear saturation parameters obtained from terrestrial experiments. We impose further constraints on the neutron star mass and radius while the candidate neutron star models are consistent with the constraints obtained from other available astronomical and experimental observations

    Structure of Neutron Stars in Tensor-Vector-Scalar Theory

    Full text link
    Bekenstein's Tensor-Vector-Scalar (TeVeS) theory has had considerable success in explaining various phenomena without the need for dark matter. However, it is difficult to observationally discern the differences between TeVeS and predictions made within the Lambda-cold dark matter concordance model. This implies that alternative tests are required that independently verify which theory is correct. For this we turn to the strong-field regime of TeVeS. In particular, we solve the spherically symmetric equations of hydrostatic equilibrium for a perfect fluid with a realistic equation of state to build models of neutron stars in TeVeS. We show that causality within the neutron star is only maintained for certain cosmological values of the scalar field, which allows us to put constraints on this value independently of cosmological observations. We also discuss in detail the internal structure of neutron stars and how each of the free parameters in the theory effects the overall size and mass of the neutron stars. In particular, the radii of neutron stars in TeVeS can significantly differ from those in General Relativity for certain values of the vector field coupling, which allows us to also place extra constraints on this parameter. Finally, we discuss future observations of neutron stars using both the electromagnetic and gravitational wave spectrums that will allow for tests of the appropriate theory of gravity.Comment: Accepted for publication in Phys. Rev.

    Gravitational radiation from collapsing magnetized dust

    Get PDF
    In this article we study the influence of magnetic fields on the axial gravitational waves emitted during the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations

    Nonradial oscillations of quark stars

    Full text link
    Recently, it has been reported that a candidate for a quark star may have been observed. In this article, we pay attention to quark stars with radiation radii in the reported range. We calculate nonradial oscillations of ff-, ww- and wIIw_{\rm II}-modes. Then, we find that the dependence of the ff-mode quasi-normal frequency on the bag constant and stellar radiation radius is very strong and different from that of the lowest wIIw_{\rm II}-mode quasi-normal frequency. Furthermore we deduce a new empirical formula between the ff-mode frequency of gravitational waves and the parameter of the equation of state for quark stars. The observation of gravitational waves both of the ff-mode and of the lowest wIIw_{\rm II}-mode would provide a powerful probe for the equation of state of quark matter and the properties of quark stars.Comment: 13 pages, 6 figures, accepted for publication in Phys.Rev.

    Nuclei in Strongly Magnetised Neutron Star Crusts

    Full text link
    We discuss the ground state properties of matter in outer and inner crusts of neutron stars under the influence of strong magnetic fields. In particular, we demonstrate the effects of Landau quantization of electrons on compositions of neutron star crusts. First we revisit the sequence of nuclei and the equation of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS) model in the presence of strong magnetic fields and most recent versions of the theoretical and experimental nuclear mass tables. Next we deal with nuclei in the inner crust. Nuclei which are arranged in a lattice, are immersed in a nucleonic gas as well as a uniform background of electrons in the inner crust. The Wigner-Seitz approximation is adopted in this calculation and each lattice volume is replaced by a spherical cell. The coexistence of two phases of nuclear matter - liquid and gas, is considered in this case. We obtain the equilibrium nucleus corresponding to each baryon density by minimizing the free energy of the cell. We perform this calculation using Skyrme nucleon-nucleon interaction with different parameter sets. We find nuclei with larger mass and charge numbers in the inner crust in the presence of strong magnetic fields than those of the zero field case for all nucleon-nucleon interactions considered here. However, SLy4 interaction has dramatic effects on the proton fraction as well as masses and charges of nuclei. This may be attributed to the behaviour of symmetry energy with density in the sub-saturation density regime. Further we discuss the implications of our results to shear mode oscillations of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South Africa in November, 2011 and to be published in a book by Springer Verla
    corecore