161 research outputs found

    The influence of body mass index and age on C-peptide at the diagnosis of type 1 diabetes in children who participated in the diabetes prevention trial-type 1

    Get PDF
    BACKGROUND/OBJECTIVE: The extent of influence of BMI and age on C-peptide at the diagnosis of type 1 diabetes (T1D) is unknown. We thus studied the impact of body mass index Z-scores (BMIZ) and age on C-peptide measures at and soon after the diagnosis of T1D. METHODS: Data from Diabetes Prevention Trial-Type 1 (DPT-1) participants <18.0 years at diagnosis was analyzed. Analyses examined associations of C-peptide measures with BMIZ and age in 2 cohorts: oral glucose tolerance tests (OGTTs) at diagnosis (n = 99) and mixed meal tolerance tests (MMTTs) <6 months after diagnosis (n = 80). Multivariable linear regression was utilized. RESULTS: Fasting and area under the curve (AUC) C-peptide from OGTTs (n = 99) at diagnosis and MMTTs (n = 80) after diagnosis were positively associated with BMIZ and age (P < .001 for all). Associations persisted when BMIZ and age were included as independent variables in regression models (P < .001 for all). BMIZ and age explained 31%-47% of the variance of C-peptide measures. In an example, 2 individuals with identical AUC C-peptide values had an approximate 5-fold difference in values after adjustments for BMIZ and age. The association between fasting glucose and C-peptide decreased markedly when fasting C-peptide values were adjusted (r = 0.30, P < .01 to r = 0.07, n.s.). CONCLUSIONS: C-peptide measures are strongly and independently related to BMIZ and age at and soon after the diagnosis of T1D. Adjustments for BMIZ and age cause substantial changes in C-peptide values, and impact the association between glycemia and C-peptide. Such adjustments can improve assessments of β-cell impairment at diagnosis

    The relationship between BMI and insulin resistance and progression from single to multiple autoantibody positivity and type 1 diabetes among TrialNet Pathway to Prevention participants

    Get PDF
    Aims/hypothesis The incidence of type 1 diabetes is increasing at a rate of 3–5% per year. Genetics cannot fully account for this trend, suggesting an influence of environmental factors. The accelerator hypothesis proposes an effect of metabolic factors on type 1 diabetes risk. To test this in the TrialNet Pathway to Prevention (PTP) cohort, we analysed the influence of BMI, weight status and insulin resistance on progression from single to multiple islet autoantibodies (Aab) and progression from normoglycaemia to diabetes. Methods HOMA1-IR was used to estimate insulin resistance in Aab-positive PTP participants. Cox proportional hazards models were used to evaluate the effects of BMI, BMI percentile (BMI%), weight status and HOMA1-IR on the progression of autoimmunity or the development of diabetes. Results Data from 1,310 single and 1,897 multiple Aab-positive PTP participants were included. We found no significant relationships between BMI, BMI%, weight status or HOMA1-IR and the progression from one to multiple Aabs. Similarly, among all Aab-positive participants, no significant relationships were found between BMI, weight status or HOMA1-IR and progression to diabetes. Diabetes risk was modestly increased with increasing BMI% among the entire cohort, in obese participants 13–20 years of age and with increasing HOMA1-IR in adult Aab-positive participants. Conclusions/interpretation Analysis of the accelerator hypothesis in the TrialNet PTP cohort does not suggest a broad influence of metabolic variables on diabetes risk. Efforts to identify other potentially modifiable environmental factors should continue

    Fall in C-peptide during first 2 years from diagnosis: Evidence of at least two distinct phases from composite type 1 diabetes trialnet data.

    Get PDF
    Interpretation of clinical trials to alter the decline in β-cell function after diagnosis of type 1 diabetes depends on a robust understanding of the natural history of disease. Combining data from the Type 1 Diabetes TrialNet studies, we describe the natural history of β-cell function from shortly after diagnosis through 2 years post study randomization, assess the degree of variability between patients, and investigate factors that may be related to C-peptide preservation or loss. We found that 93% of individuals have detectable C-peptide 2 years from diagnosis. In 11% of subjects, there was no significant fall from baseline by 2 years. There was a biphasic decline in C-peptide; the C-peptide slope was −0.0245 pmol/mL/month (95% CI −0.0271 to −0.0215) through the first 12 months and −0.0079 (−0.0113 to −0.0050) from 12 to 24 months (P \u3c 0.001). This pattern of fall in C-peptide over time has implications for understanding trial results in which effects of therapy are most pronounced early and raises the possibility that there are time-dependent differences in pathophysiology. The robust data on the C-peptide obtained under clinical trial conditions should be used in planning and interpretation of clinical trials

    β Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis

    Get PDF
    BACKGROUND: The duration and patterns of β cell dysfunction during type 1 diabetes (T1D) development have not been fully defined. METHODS: Metabolic measures derived from oral glucose tolerance tests (OGTTs) were compared between autoantibody-positive (aAb+) individuals followed in the TrialNet Pathway to Prevention study who developed diabetes after 5 or more years or less than 5 years of longitudinal follow-up (Progressors≥5, n = 75; Progressors<5, n = 474) and 144 aAb-negative (aAb-) relatives. RESULTS: Mean age at study entry was 15.0 ± 12.6 years for Progressors≥5; 12.0 ± 9.1 for Progressors<5; and 16.3 ± 10.4 for aAb- relatives. At baseline, Progressors≥5 already exhibited significantly lower fasting C-peptide (P < 0.01), C-peptide AUC (P < 0.001), and early C-peptide responses (30- to 0-minute C-peptide; P < 0.001) compared with aAb- relatives, while 2-hour glucose (P = 0.03), glucose AUC (<0.001), and Index60 (<0.001) were all higher. Despite significant baseline impairment, metabolic measures in Progressors≥5 were relatively stable until 2 years prior to T1D diagnosis, when there was accelerated C-peptide decline and rising glycemia from 2 years until diabetes diagnosis. Remarkably, patterns of progression within 3 years of diagnosis were nearly identical between Progressors≥5 and Progressors<5. CONCLUSION: These data provide insight into the chronicity of β cell dysfunction in T1D and indicate that β cell dysfunction may precede diabetes diagnosis by more than 5 years in a subset of aAb+ individuals. Even among individuals with varying lengths of aAb positivity, our findings indicate that patterns of metabolic decline are uniform within the last 3 years of progression to T1D. TRIAL REGISTRATION: Clinicaltrials.gov NCT00097292. FUNDING: The Type 1 Diabetes TrialNet Study Group is a clinical trials network currently funded by the NIH through the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Allergy and Infectious Diseases, and The Eunice Kennedy Shriver National Institute of Child Health and Human Development and the Juvenile Diabetes Research Foundation

    The risk of progression to type 1 diabetes is highly variable in individuals with multiple autoantibodies following screening

    Get PDF
    Aims/hypothesis: Young children who develop multiple autoantibodies (mAbs) are at very high risk for type 1 diabetes. We assessed whether a population with mAbs detected by screening is also at very high risk, and how risk varies according to age, type of autoantibodies and metabolic status. Methods: Type 1 Diabetes TrialNet Pathway to Prevention participants with mAbs (n = 1815; age, 12.35 ± 9.39 years; range, 1-49 years) were analysed. Type 1 diabetes risk was assessed according to age, autoantibody type/number (insulin autoantibodies [IAA], glutamic acid decarboxylase autoantibodies [GADA], insulinoma-associated antigen-2 autoantibodies [IA-2A] or zinc transporter 8 autoantibodies [ZnT8A]) and Index60 (composite measure of fasting C-peptide, 60 min glucose and 60 min C-peptide). Cox regression and cumulative incidence curves were utilised in this cohort study. Results: Age was inversely related to type 1 diabetes risk in those with mAbs (HR 0.97 [95% CI 0.96, 0.99]). Among participants with 2 autoantibodies, those with GADA had less risk (HR 0.35 [95% CI 0.22, 0.57]) and those with IA-2A had higher risk (HR 2.82 [95% CI 1.76, 4.51]) of type 1 diabetes. Those with IAA and GADA had only a 17% 5 year risk of type 1 diabetes. The risk was significantly lower for those with Index60 <1.0 (HR 0.23 [95% CI 0.19, 0.30]) vs those with Index60 values ≥1.0. Among the 12% (225/1815) ≥12.0 years of age with GADA positivity, IA-2A negativity and Index60 <1.0, the 5 year risk of type 1 diabetes was 8%. Conclusions/interpretation: Type 1 diabetes risk varies substantially according to age, autoantibody type and metabolic status in individuals screened for mAbs. An appreciable proportion of older children and adults with mAbs appear to have a low risk of progressing to type 1 diabetes at 5 years. With this knowledge, clinical trials of type 1 diabetes prevention can better target those most likely to progress

    Dysglycemia and Index60 as Prediagnostic End Points for Type 1 Diabetes Prevention Trials

    Get PDF
    OBJECTIVE: We assessed dysglycemia and a T1D Diagnostic Index60 (Index60) ≥1.00 (on the basis of fasting C-peptide, 60-min glucose, and 60-min C-peptide levels) as prediagnostic end points for type 1 diabetes among Type 1 Diabetes TrialNet Pathway to Prevention Study participants. RESEARCH DESIGN AND METHODS: Two cohorts were analyzed: 1) baseline normoglycemic oral glucose tolerance tests (OGTTs) with an incident dysglycemic OGTT and 2) baseline Index60 <1.00 OGTTs with an incident Index60 ≥1.00 OGTT. Incident dysglycemic OGTTs were divided into those with (DYS/IND+) and without (DYS/IND-) concomitant Index60 ≥1.00. Incident Index60 ≥1.00 OGTTs were divided into those with (IND/DYS+) and without (IND/DYS-) concomitant dysglycemia. RESULTS: The cumulative incidence for type 1 diabetes was greater after IND/DYS- than after DYS/IND- (P < 0.01). Within the normoglycemic cohort, the cumulative incidence of type 1 diabetes was higher after DYS/IND+ than after DYS/IND- (P < 0.001), whereas within the Index60 <1.00 cohort, the cumulative incidence after IND/DYS+ and after IND/DYS- did not differ significantly. Among nonprogressors, type 1 diabetes risk at the last OGTT was greater for IND/DYS- than for DYS/IND- (P < 0.001). Hazard ratios (HRs) of DYS/IND- with age and 30- to 0-min C-peptide were positive (P < 0.001 for both), whereas HRs of type 1 diabetes with these variables were inverse (P < 0.001 for both). In contrast, HRs of IND/DYS- and type 1 diabetes with age and 30- to 0-min C-peptide were consistent (all inverse [P < 0.01 for all]). CONCLUSIONS: The findings suggest that incident dysglycemia without Index60 ≥1.00 is a suboptimal prediagnostic end point for type 1 diabetes. Measures that include both glucose and C-peptide levels, such as Index60 ≥1.00, appear better suited as prediagnostic end points

    HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression

    Get PDF
    The HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is linked to protection from the development of type 1 diabetes (T1D). However, it is not known at which stages in the natural history of T1D development this haplotype affords protection. We examined a cohort of 3,358 autoantibody-positive relatives of T1D patients in the Pathway to Prevention (PTP) Study of the Type 1 Diabetes TrialNet. The PTP study examines risk factors for T1D and disease progression in relatives. HLA typing revealed that 155 relatives carried this protective haplotype. A comparison with 60 autoantibody-negative relatives suggested protection from autoantibody development. Moreover, the relatives with DRB1*15:01-DQA1*01:02-DQB1*06:02 less frequently expressed autoantibodies associated with higher T1D risk, were less likely to have multiple autoantibodies at baseline, and rarely converted from single to multiple autoantibody positivity on follow-up. These relatives also had lower frequencies of metabolic abnormalities at baseline and exhibited no overall metabolic worsening on follow-up. Ultimately, they had a very low 5-year cumulative incidence of T1D. In conclusion, the protective influence of DRB1*15:01-DQA1*01:02-DQB1*06:02 spans from autoantibody development through all stages of progression, and relatives with this allele only rarely develop T1D

    The obesity epidemic in 32,936 youth with type 1 diabetes (T1D) in the German/Austrian DPV and US T1D Exchange (T1DX) registries

    Get PDF
    Objective To examine the current extent of the obesity problem in 2 large pediatric clinical registries in the US and Europe and to examine the hypotheses that increased body mass index (BMI) z-scores (BMIz) are associated with greater hemoglobin A1c (HbA1c) and increased frequency of severe hypoglycemia in youth with type 1 diabetes (T1D). Study design International (World Health Organization) and national (Centers for Disease Control and Prevention/German Health Interview and Examination Survey for Children and Adolescents) BMI references were used to calculate BMIz in participants (age 2-<18 years and ≥1 year duration of T1D) enrolled in the T1D Exchange (n = 11 435) and the Diabetes Prospective Follow-up (n = 21 501). Associations between BMIz and HbA1c and severe hypoglycemia were assessed. Results Participants in both registries had median BMI values that were greater than international and their respective national reference values. BMIz was significantly greater in the T1D Exchange vs the Diabetes Prospective Follow-up (P < .001). After stratification by age-group, no differences in BMI between registries existed for children 2-5 years, but differences were confirmed for 6- to 9-, 10- to 13-, and 14- to 17-year age groups (all P < .001). Greater BMIz were significantly related to greater HbA1c levels and more frequent occurrence of severe hypoglycemia across the registries, although these associations may not be clinically relevant. Conclusions Excessive weight is a common problem in children with T1D in Germany and Austria and, especially, in the US. Our data suggest that obesity contributes to the challenges in achieving optimal glycemic control in children and adolescents with T1D

    Early and late C-peptide responses during oral glucose tolerance testing are oppositely predictive of type 1 diabetes in autoantibody-positive individuals

    Get PDF
    We examined whether the timing of the C-peptide response during an oral glucose tolerance test (OGTT) in relatives of patients with type 1 diabetes (T1D) is predictive of disease onset. We examined baseline 2-h OGTTs from 670 relatives participating in the Diabetes Prevention Trial-Type 1 (age: 13.8 ± 9.6 years; body mass index z score: 0.3 ± 1.1; 56% male) using univariate regression models. T1D risk increased with lower early C-peptide responses (30–0 min) (χ2 = 28.8, P < 0.001), and higher late C-peptide responses (120–60 min) (χ2 = 23.3, P < 0.001). When both responses were included in a proportional hazards model, they remained independently and oppositely associated with T1D, with a stronger overall association for the combined model than either response alone (χ2 = 41.1; P < 0.001). Using receiver operating characteristic curve analysis, the combined early and late C-peptide response was more accurately predictive of T1D than area under the curve C-peptide (P = 0.005). Our findings demonstrate that lower early and higher late C-peptide responses serve as indicators of increased T1D risk
    corecore