7 research outputs found

    Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343)

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Bering Sea sediments represent exceptional archives, offering the potential to study past climates and biogeochemistry at a high resolution. However, abundant hydrocarbons of microbial origin, especially along the eastern Bering Sea continental margin, can hinder the applicability of palaeoceanographic proxies based on calcareous foraminifera, due to the formation of authigenic carbonates. Nonetheless, authigenic carbonates may also bear unique opportunities to reconstruct changes in the sedimentary redox environment. Here we use a suite of visual and geochemical evidence from single-specimens of the shallow infaunal benthic foraminiferal species Elphidium batialis Saidova (1961), recovered from International Ocean Discovery Program (IODP) Site U1343 in the eastern Bering Sea, to investigate the influence of authigenic carbonates on the foraminiferal trace metal composition. Our results demonstrate that foraminiferal calcite tests act as a nucleation template for secondary carbonate precipitation, altering their geochemistry where organoclastic sulphate reduction and anaerobic oxidation of methane cause the formation of low- and high-Mg calcite, respectively. The authigenic carbonates can occur as encrusting on the outside and/or inside of foraminiferal tests, in the form of recrystallization of the test wall, or as banding along natural laminations within the foraminiferal test walls. In addition to Mg, authigenic carbonates are enriched in U/Ca, Mn/Ca, Fe/Ca, and Sr/Ca, depending on the redox environment that they were formed in. Our results demonstrate that site-specific U/Ca thresholds are a promising tool to distinguish between diagenetically altered and pristine foraminiferal samples, important for palaeoceanographic reconstructions utilising the primary foraminiferal geochemistry. Consistent with previous studies, U/Mn ratios of foraminifera at IODP Site U1343 increase according to their degree of diagenetic alteration, suggesting a potential response of authigenic U/Mn to the microbial activity in turn linked to the sedimentary redox environment.BGS University Funding Initiative Ph.D. studentshi

    Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability The climate model output data are available for analysis and download at https://www.paleo.bristol.ac.uk/ummodel/scripts/papers/Bradshaw_et_al_2021.html. It is possible to reproduce the information in Figs. 2, 3, 5 and 6 via this interface as well as download the data itself and the ancillary information (palaeogeography and ice-sheet configuration).Oxygen isotopes from ocean sediments (δ O) used to reconstruct past continental ice volumes additionally record deep water temperatures (DWTs). Traditionally, these are assumed to be coupled (ice-volume changes cause DWT changes). However, δ O records during peak Middle Miocene warmth (~16–15 million years ago) document large rapid fluctuations (~1–1.5‰) difficult to explain as huge Antarctic ice sheet (AIS) volume changes. Here, using climate modelling and data comparisons, we show DWTs are coupled to AIS spatial extent, not volume, because Antarctic albedo changes modify the hydrological cycle, affecting Antarctic deep water production regions. We suggest the Middle Miocene AIS had retreated substantially from previous Oligocene maxima. The residual ice sheet varied spatially more rapidly on orbital timescales than previously thought, enabling large DWT swings (up to 4 °C). When Middle Miocene warmth terminated (~13 million years ago) and a continent-scale AIS had stabilized, further ice-volume changes were predominantly in height rather than extent, with little impact on DWT. Our findings imply a shift in ocean sensitivity to ice-sheet changes occurs when AIS retreat exposes previously ice-covered land; associated feedbacks could reduce the Earth system’s ability to maintain a large AIS. This demonstrates ice-sheet changes should be characterized not only by ice volume but also by spatial extent. 18 18Natural Environment Research CouncilNatural Environment Research CouncilSwedish Research Counci
    corecore