79 research outputs found

    All-fiber optical supercontinuum sources in 1.7-3.2 μm range

    Get PDF
    We report supercontinuum generation in the 1.7-2.9 μm range with up to 3.08 W of output power and in the range of 1.93-3.18 μm with up to 3.8 W of output power from all-fiber MOPA pulsed systems with Tm-doped fiber mode-locked seed laser. Supercontinuum generation was demonstrated in nonlinear germanate fibers and fluoride (ZBLAN) fibers. The supercontinuum bandwidth reached 1250 nm at -10 dB level

    YDFL operating in 1150-1200-nm spectral domain

    Get PDF
    A family of high-power Yb-doped fiber lasers operated in the range of 1150-1180 nm with output powers of up to 35 W and optical efficiencies up to 60% is realized. Operation at 1200 nm is also demonstrated. Amplified spontaneous emission increase with output power increase is analyzed in frames of the inhomogeneous broadening concept

    Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 μm

    Get PDF
    We report the high-energy flat-top supercontinuum covering the mid-infrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98-2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism - Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that, we investigate two versions of the compact diode-pumped SESAM mode-locked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98-2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, the average power of 2.1 W at 7.5 MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53 μm supercontinuum source in the external highly-nonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, stand-off detection, medical surgery and fine material processing

    A route to high peak power and energy scaling in the mid-IR chirped-pulse oscillator-amplifier laser systems

    Full text link
    The paper introduces a new route towards the ultrafast high laser peak power and energy scaling in a hybrid mid-IR chirped pulse oscillator-amplifier (CPO-CPA) system, without sacrificing neither the pulse duration nor energy. The method is based on using a CPO as a seed source allowing the beneficial implementation of a dissipative soliton (DS) energy scaling approach, coupled with a universal CPA technique. The key is avoiding a destructive nonlinearity in the final stages of an amplifier and compressor elements by using a chirped high-fidelity pulse from CPO. Our main intention is to realize this approach in a Cr2+:ZnS-based CPO as a source of energy-scalable DSs with well-controllable phase characteristics for a single-pass Cr2+:ZnS amplifier. A qualitative comparison of experimental and theoretical results provides a road map for the development and energy scaling of the hybrid CPO-CPA laser systems, without compromising pulse duration. The suggested technique opens up a route towards extremely intense ultra-short pulses and frequency combs from the multi-pass CPO-CPA laser systems that are particularly interesting for real-life applications in the mid-IR spectral range from 1 to 20 um.Comment: 16 pages, 14 figure

    Supercontinuum generation in mid-IR using chalcogenide and germanate nonlinear fiber

    Get PDF
    We demonstrate mid-infrared (mid-IR) supercontinuum generation with bandwidth from 2 to 2.8 μm at 20 dB below the peak in nonlinear step-index chalcogenide fiber using femtosecond mid-IR pulses directly from the oscillator. We compare the results with a supercontinuum generated in a silica-based high germanium content fiber. Supercontinuum generation occurs at 90 mW of launched average pump power that is equal to the 0.9 nJ pulse energy. The distinctive feature of the obtained supercontinuum is its stability and coherence due to the deterministic supercontinuum generation by the femtosecond pump pulses

    Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4 µm using OP-GaP

    Get PDF
    We report a broadband mid-infrared frequency comb with three-optical-cycle pulse duration centered around 4.2 µm, via half-harmonic generation using orientation-patterned GaP (OP-GaP) with ~43% conversion efficiency. We experimentally compare performance of GaP with GaAs and lithium niobate as the nonlinear element, and show how properties of GaP at this wavelength lead to generation of the shortest pulses and the highest conversion efficiency. These results shed new light on half-harmonic generation of frequency combs, and pave the way for generation of short-pulse intrinsically-locked frequency combs at longer wavelengths in the mid-infrared with high conversion efficiencies

    Novel Y2O3-codoped Yb/Tm-doped picosecond fiber laser

    Get PDF
    We demonstrate the novel picosecond mode-locked Y2O 3-codoped Yb/Tm-doped fiber lasers, operating at 1950 nm and producing pulses of up to 1 nJ energy, using a SESAM and an Er-doped pump fiber laser operating at the wavelength 1590 nm or a semiconductor pump laser operating at the wavelength of 1560 nm. We also report on the spectroscopic characterization of these new fibers with various compositions, identifying the optimum one for the maximum Yb/Tm energy transfer, the latter increasing with the increase of the Y concentration. The observed energy transfer between Yb and Tm makes this laser promising also for direct diode-pumping with most advanced and low cost 975 nm diodes, making this laser attractive for compact low cost picosecond Tm-doped fiber laser systems

    Vapor Deposited Cr-doped ZnS Thin Films: Towards Optically Pumped Mid-Infrared Waveguide Lasers

    Get PDF
    Compact, affordable mid-IR lasers require the development of gain materials in waveguide form. We report on the high vacuum deposition of Cr:ZnS films with concentration ranging from 1018-1020 dopants/cm3 . At low concentrations, films display well-isolated absorption associated with substitutional Cr2+ ions in the lattice. Spatial modulation of the dopant concentration suppresses the absorption associated with this substitution. Lateral crystallite sizes less than 30 nm are associated with the lowest substrate temperatures (\u3c50 °C) used during deposition, and waveguide losses as low as 8dB/cm are observed. These materials are promising candidates as gain media for fabrication of waveguide mid-IR lasers

    Emission decay and energy transfer in Yb/Tm Y-codoped fibers based on nano-modified glass

    Get PDF
    We report the results of an experimental investigation and theoretical analysis of luminescence decay in Yb/Tm Y-codoped fibers based on nano-modified glass. Based on the experimental results, numerical simulations allowed us to estimate the energy transfer efficiency between Yb3+ and Tm3+ ions. It was shown that yttria enhances the Yb/Tm energy transfer making fibers with Y-codoping a promising candidate for the development of light sources for laser applications and up-conversion emitters for visualization applications. These fibers demonstrate energy transfer efficiency of ∼50%, which makes them attractive for diode-pumping of Yb-ions at a wavelength of 975 nm

    Mid-IR Ultrafast Laser Technology for Science and Industry

    No full text
    The talk reviews fundamentals as well as recent advances in fiber based ultrafast mid-IR lasers and frequency combs, providing a flexible and robust fiber based technology platform to address demanding requirements set by the most advanced scientific and industrial applications, such as optogenetics, ultrasensitive molecular detection, nonlinear confocal microscopy, 3D-IR and multiphoton nonlinear spectroscopy, astrocombs, neurosurgery as well as fine material processing
    • …
    corecore