26 research outputs found

    Finite element analysis of porous commercially pure titanium for biomedical implant application

    Get PDF
    In biomedical implant applications, porous metallic structures are particularly appealing as they enhance the stiffness compatibility with the host tissue. The mechanical properties of the porous material are critically affected by microstructural features, such as the pore shape, the distribution of porosity, and the level of porosity. In this study, mechanical properties of porous commercially pure titanium structures with various porosity levels were investigated through a combination of experiments and finite element modelling. Finite element simulations were conducted on representative volume elements of the microstructure to assess the role of pore parameters on the effective mechanical properties. Modelling results indicated that the shape of the pore, in addition to porosity level, play a significant role on the effective behaviour. Finite element simulations provide reasonably accurate prediction of the effective Young's modulus, with errors as low as 0.9% for porosity of 35%. It was observed that the large spread in yield strength produced by the simulations was most likely due to the random pore distribution in the network, which may lead to a high probability of plastic strain initiation within the thin walls of the porous network

    Optimising degradation and mechanical performance of additively manufactured biodegradable Fe–Mn scaffolds using design strategies based on triply periodic minimal surfaces

    Get PDF
    Additively manufactured lattices based on triply periodic minimal surfaces (TPMS) have attracted significant research interest from the medical industry due to their good mechanical and biomorphic properties. However, most studies have focussed on permanent metallic implants, while very little work has been undertaken on manufacturing biodegradable metal lattices. In this study, the mechanical properties and in vitro corrosion of selective laser melted Fe–35%Mn lattices based on gyroid, diamond and Schwarz primitive unit-cells were comprehensively evaluated to investigate the relationships between lattice type and implant performance. The gyroid-based lattices were the most readily processable scaffold design for controllable porosity and matching the CAD design. Mechanical properties were influenced by lattice geometry and pore volume. The Schwarz lattices were stronger and stiffer than other designs with the 42% porosity scaffold exhibiting the highest combination of strength and ductility, while diamond and gyroid based scaffolds had lower strength and stiffness and were more plastically compliant. The corrosion behaviour was strongly influenced by porosity, and moderately influenced by geometry and geometry-porosity interaction. At 60% porosity, the diamond lattice displayed the highest degradation rate due to an inherently high surface area-to-volume ratio. The biodegradable Fe–35Mn porous scaffolds showed a good cytocompatibility to primary human osteoblasts cells. Additive manufacturing of biodegradable Fe–Mn alloys employing TPMS lattice designs is a viable approach to optimise and customise the mechanical properties and degradation response of resorbable implants toward specific clinical applications for hard tissue orthopaedic repair

    Complete genome sequence of Escherichia coli Siphophage BRET

    Get PDF
    The lytic Escherichia coli siphophage BRET was isolated from a chicken obtained at a local market in Abidjan, Côte d’Ivoire. Its linear genome sequence consists of 59,550 bp (43.4% GC content) and contains 88 predicted genes, including 4 involved in archaeosine biosynthesis. Phage BRET is related (95% nucleotide identity) to Enterobacteria phage JenK

    OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism

    Get PDF
    Analysis of variants in three genes encoding oxysterol-binding protein (OSBP) homologues (OSBPL2, OSBPL9, OSBPL10) in Finnish families with familial low high-density lipoprotein (HDL) levels (N = 426) or familial combined hyperlipidemia (N = 684) revealed suggestive linkage of OSBPL10 single-nucleotide polymorphisms (SNPs) with extreme end high triglyceride (TG; >90th percentile) trait. Prompted by this initial finding, we carried out association analysis in a metabolic syndrome subcohort (Genmets) of Health2000 examination survey (N = 2,138), revealing association of multiple OSBPL10 SNPs with high serum TG levels (>95th percentile). To investigate whether OSBPL10 could be the gene underlying the observed linkage and association, we carried out functional experiments in the human hepatoma cell line Huh7. Silencing of OSBPL10 increased the incorporation of [3H]acetate into cholesterol and both [3H]acetate and [3H]oleate into triglycerides and enhanced the accumulation of secreted apolipoprotein B100 in growth medium, suggesting that the encoded protein ORP10 suppresses hepatic lipogenesis and very-low-density lipoprotein production. ORP10 was shown to associate dynamically with microtubules, consistent with its involvement in intracellular transport or organelle positioning. The data introduces OSBPL10 as a gene whose variation may contribute to high triglyceride levels in dyslipidemic Finnish subjects and provides evidence for ORP10 as a regulator of cellular lipid metabolism

    Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell

    No full text
    Additively manufactured porous metallic structures have recently received great attention for use in hard tissue applications. In particular, periodic regular porous networks are found to be very promising in terms of mechanical performance and compatibility with the host tissue. This work investigates for the first time three different types of porous Ti-6Al-4V structures manufactured using selective laser melting (SLM) using a solid network based on a Schwartz primitive unit-cell. Both internal features and microstructure of the SLM-produced samples were investigated. A good consistency in both strut size and pore size was observed between the produced structures. The results of uniaxial compression testing were compared with results calculated using the finite element method (FEM) modelling. The results of mechanical testing for the 64% porous samples match the properties of cortical bone, with a stiffness of 22.3 GPa and a yield strength of 160 MPa. A minimal pore size of 596 µm was achieved, which is within the recommended suitable range for bio-integration. A comparison between the numerical models and the experimental results suggest that the geometrical inaccuracy caused by powder adhesion has an insignificant impact on the static mechanical properties

    Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: advantages, challenges and opinion for future development

    No full text
    Titanium and its alloys have received considerable attention for biomedical applications such as orthopaedic implants due to their outstanding mechanical properties and excellent biocompatibility. However, their composition, structural design and fabrication can be further tailored to improve key properties to make them more compatible with the human body and reduce their expense so that they can better compete with conventional metallic biomaterials. In this work, we provide a concise overview of additive manufacturing technologies and their application to biomedical titanium-based materials with a focus on the main achievements and issues which remain to be addressed. Subsequently, we highlight the potential to develop additive manufacturing of novel, low-cost porous titanium composites to meet the needs for biomedical orthopaedic implants. The article provides a pathway to their development through the application of alloy composition design and reinforcement strategies, manufacturing optimisation and identification of process-structure-property relationships controlling performance in combination with computer-aided structural design tools. This work aims to provide a platform for cost-effective manufacture of titanium composite orthopaedic implants with enhanced lifespans and structural compatibility

    Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications

    No full text
    Integrating porous networks in load-bearing implants is essential in order to improve mechanical compatibility with the host tissue. Additive manufacturing has enabled the optimisation of the mechanical properties of metallic biomaterials, notably with the use of novel periodic regular geometries as porous structures. In this work, we successfully produced solid and lattice structures made of Ti–25Ta alloy with selective laser melting (SLM) using a Schwartz primitive unit-cell for the first time. The manufacturability and repeatability of the process was assessed through macrostructural and microstructural observations along with compressive testing. The mechanical properties are found to be suitable for bone replacement applications, showing significantly reduced elastic moduli, ranging from 14 to 36 GPa depending on the level of porosity. Compared to the conventionally used biomedical Ti–6Al–4V alloy, the Ti–Ta alloy offers superior mechanical compatibility for the targeted applications with lower elastic modulus, similar strength and higher ductility, making the Ti–25Ta alloy a promising candidate for a new generation of load-bearing implants

    Bone Ingrowth Simulation Within the Hexanoid, a Novel Scaffold Design

    No full text
    The utilization of bone scaffold implants represents a promising approach for repairing substantial bone defects. In recent years, various traditional scaffold structures have been developed and, with advances in materials biology and computer technology, novel scaffold designs are now being evaluated. This study investigated the effects of a novel scaffold unit cell design (Hexanoid) through a computational framework, comparing its performance to that of four well-known scaffold designs. A finite element analysis numerical simulation and mechanical testing were conducted to analyze the dynamic bone ingrowth process and the mechanical strength of the different scaffold designs. Bone formation within the Ti-6Al-4V metal scaffolds was simulated based on the theory of bone remodeling. The outcomes of the study reveal that the novel scaffold design (Hexanoid) attains a notably elevated ultimate bone volume fraction (*27%), it outperformed conventional unit-cell designs found in extant literature, such as cubic design with 19.1% and circular design with 16.9% in relation to the bone-to-cavity volume ratio. This novel structure also has comparable mechanical strength to that of human compact bone tissue. While the design was not optimal in every category, it provided a very satisfactory overall performance regarding certain key aspects of bone performances in comparison with the five scaffold structures evaluated. Although limitations exist in this project, similar methodologies can also be applied in the primary evaluation of new scaffold structures, resulting in improved efficiency and effectiveness. In future research, the results of this project may be integrated with clinical rehabilitation processes to offer a critical evaluation for optimization of additional novel scaffold unit-cell structure designs.</p

    Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering

    No full text
    Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human cortical bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 44.2 GPa, 24.7 GPa and 15.4 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 221.7 MPa and 117 MPa are superior to that of human cortical bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications

    Contamination of street food with multidrug-resistant Salmonella, in Ouagadougou, Burkina Faso

    No full text
    International audienceBackgroundGastrointestinal infections are a global public health problem. In Burkina Faso, West Africa, exposure to Salmonella through the consumption of unhygienic street food represents a major risk of infection requiring detailed evaluation.MethodsBetween June 2017 and July 2018, we sampled 201 street food stalls, in 11 geographic sectors of Ouagadougou, Burkina Faso. We checked for Salmonella contamination in 201 sandwiches (one per seller), according to the ISO 6579:2002 standard. All Salmonella isolates were characterized by serotyping and antimicrobial susceptibility testing, and whole-genome sequencing was performed on a subset of isolates, to investigate their phylogenetic relationships and antimicrobial resistance determinants.ResultsThe prevalence of Salmonella enterica was 17.9% (36/201) and the Salmonella isolates belonged to 16 different serotypes, the most frequent being Kentucky, Derby and Tennessee, with five isolates each. Six Salmonella isolates from serotypes Brancaster and Kentucky were multidrug-resistant (MDR). Whole-genome sequencing revealed that four of these MDR isolates belonged to the emergent S. enterica serotype Kentucky clone ST198-X1 and to an invasive lineage of S. enterica serotype Enteritidis (West African clade).ConclusionThis study reveals a high prevalence of Salmonella spp. in sandwiches sold in Ouagadougou. The presence of MDR Salmonella in food on sale detected in this study is also matter of concern
    corecore