8 research outputs found

    Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

    Get PDF
    Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair

    Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers

    Get PDF
    INTRODUCTION: Basal-phenotype or basal-like breast cancers are characterized by basal epithelium cytokeratin (CK5/14/17) expression, negative estrogen receptor (ER) status and distinct gene expression signature. We studied the clinical and biological features of the basal-phenotype tumors determined by immunohistochemistry (IHC) and cDNA microarrays especially within the ER-negative subgroup. METHODS: IHC was used to evaluate the CK5/14 status of 445 stage II breast cancers. The gene expression signature of the CK5/14 immunopositive tumors was investigated within a subset (100) of the breast tumors (including 50 ER-negative tumors) with a cDNA microarray. Survival for basal-phenotype tumors as determined by CK5/14 IHC and gene expression signature was assessed. RESULTS: From the 375 analyzable tumor specimens, 48 (13%) were immunohistochemically positive for CK5/14. We found adverse distant disease-free survival for the CK5/14-positive tumors during the first years (3 years hazard ratio (HR) 2.23, 95% confidence interval (CI) 1.17 to 4.24, p = 0.01; 5 years HR 1.80, 95% CI 1.02 to 3.15, p = 0.04) but the significance was lost at the end of the follow-up period (10 years HR 1.43, 95% CI 0.84 to 2.43, p = 0.19). Gene expression profiles of immunohistochemically determined CK5/14-positive tumors within the ER-negative tumor group implicated 1,713 differently expressed genes (p < 0.05). Hierarchical clustering analysis with the top 500 of these genes formed one basal-like and a non-basal-like cluster also within the ER-negative tumor entity. A highly concordant classification could be constructed with a published gene set (Sorlie's intrinsic gene set, concordance 90%). Both gene sets identified a basal-like cluster that included most of the CK5/14-positive tumors, but also immunohistochemically CK5/14-negative tumors. Within the ER-negative tumor entity there was no survival difference between the non-basal and basal-like tumors as identified by immunohistochemical or gene-expression-based classification. CONCLUSION: Basal cytokeratin-positive tumors have a biologically distinct gene expression signature from other ER-negative tumors. Even if basal cytokeratin expression predicts early relapse among non-selected tumors, the clinical outcome of basal tumors is similar to non-basal ER-negative tumors. Immunohistochemically basal cytokeratin-positive tumors almost always belong to the basal-like gene expression profile, but this cluster also includes few basal cytokeratin-negative tumors

    Gene expression profiling in primary breast cancer distinguishes patients developing local recurrence after breast-conservation surgery, with or without postoperative radiotherapy

    Get PDF
    Introduction Some patients with breast cancer develop local recurrence after breast-conservation surgery despite postoperative radiotherapy, whereas others remain free of local recurrence even in the absence of radiotherapy. As clinical parameters are insufficient for identifying these two groups of patients, we investigated whether gene expression profiling would add further information. Methods We performed gene expression analysis (oligonucleotide arrays, 26,824 reporters) on 143 patients with lymph node-negative disease and tumor-free margins. A support vector machine was employed to build classifiers using leave-one-out cross-validation. Results Within the estrogen receptor-positive (ER+) subgroup, the gene expression profile clearly distinguished patients with local recurrence after radiotherapy (n = 20) from those without local recurrence (n = 80 with or without radiotherapy). The receiver operating characteristic (ROC) area was 0.91, and 5,237 of 26,824 reporters had a P value of less than 0.001 (false discovery rate = 0.005). This gene expression profile provides substantially added value to conventional clinical markers (for example, age, histological grade, and tumor size) in predicting local recurrence despite radiotherapy. Within the ER- subgroup, a weaker, but still significant, signal was found (ROC area = 0.74). The ROC area for distinguishing patients who develop local recurrence from those who remain local recurrence-free in the absence of radiotherapy was 0.66 (combined ER+/ER-). Conclusion A highly distinct gene expression profile for patients developing local recurrence after breast-conservation surgery despite radiotherapy has been identified. If verified in further studies, this profile might be a most important tool in the decision making for surgery and adjuvant therapy
    corecore