1,121 research outputs found

    Zero Mode Effect Generalization for the Electromagnetic Current in the Light Front

    Full text link
    We consider in this work the electromagnetic current for a system composed by two charged bosons and show that it has a structure of many bodies even in the impulse approximation, when described in the light front time x+x^+. In terms of the two-body component for the bound state, the current contains two-body operators. We discuss the process of pair creation from the interacting photon and interpret it as a zero mode contribution to the current and its consequences for the components of currents in the light-front.Comment: 13 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:hep-th/050911

    Dark energy, Ricci-nonflat spaces, and the Swampland

    Get PDF
    It was recently pointed out that the existence of dark energy imposes highly restrictive constraints on effective field theories that satisfy the Swampland conjectures. We provide a critical confrontation of these constraints with the cosmological framework emerging from the Salam-Sezgin model and its string realization by Cvetic, Gibbons, and Pope. We also discuss the implication of the constraints for string model building.Comment: Matching version to be published in PL

    p-probabilistic k-anonymous microaggregation for the anonymization of surveys with uncertain participation

    Get PDF
    We develop a probabilistic variant of k-anonymous microaggregation which we term p-probabilistic resorting to a statistical model of respondent participation in order to aggregate quasi-identifiers in such a manner that k-anonymity is concordantly enforced with a parametric probabilistic guarantee. Succinctly owing the possibility that some respondents may not finally participate, sufficiently larger cells are created striving to satisfy k-anonymity with probability at least p. The microaggregation function is designed before the respondents submit their confidential data. More precisely, a specification of the function is sent to them which they may verify and apply to their quasi-identifying demographic variables prior to submitting the microaggregated data along with the confidential attributes to an authorized repository. We propose a number of metrics to assess the performance of our probabilistic approach in terms of anonymity and distortion which we proceed to investigate theoretically in depth and empirically with synthetic and standardized data. We stress that in addition to constituting a functional extension of traditional microaggregation, thereby broadening its applicability to the anonymization of statistical databases in a wide variety of contexts, the relaxation of trust assumptions is arguably expected to have a considerable impact on user acceptance and ultimately on data utility through mere availability.Peer ReviewedPostprint (author's final draft

    Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

    Full text link
    The Pierre Auger Collaboration has reported an excess in the number of muons of a few tens of percent over expectations computed using extrapolation of hadronic interaction models tuned to accommodate LHC data. Very recently, we proposed an explanation for the muon excess assuming the formation of a deconfined quark matter (fireball) state in central collisions of ultrarelativistic cosmic rays with air nuclei. At the first stage of its evolution the fireball contains gluons as well as uu and dd quarks. The very high baryochemical potential inhibits gluons from fragmenting into uuˉu \bar u and ddˉd \bar d, and so they fragment predominantly into ssˉs \bar s pairs. In the hadronization which follows this leads to the strong suppression of pions and hence photons, but allows heavy hadrons to be emitted carrying away strangeness. In this manner, the extreme imbalance of hadron to photon content provides a way to enhance the muon content of the air shower. In this communication we study theoretical systematics from hadronic interaction models used to describe the cascades of secondary particles produced in the fireball explosion. We study the predictions of one of the leading LHC-tuned models QGSJET II-04 considered in the Auger analysis.Comment: 7 pages LaTeX, 6 .pdf figure

    Isotropic charged cosmologies in infrared-modified electrodynamics

    Get PDF
    It has long been known that the covariant formulation of quantum electrodynamics conflicts with the local description of states in the charged sector. Some of the solutions to this problem amount to modifications of the subsidiary conditions below some arbitrarily low photon frequency. Such infrared modified theories have been shown to be equivalent to standard Maxwell electrodynamics with an additional classical electromagnetic current induced by the quantum charges. The induced current only has support for very small frequencies and cancels the effects of the physical charges on large scales. In this work we explore the possibility that this de-electrification effect could allow for the existence of isotropic charged cosmologies, thus evading the stringent limits on the electric charge asymmetry of the universe. We consider a simple model of infrared-modified scalar electrodynamics in the cosmological context and find that the charged sector generates a new contribution to the energy-momentum tensor whose dominant contribution at late times is a cosmological constant-like term. If the charge asymmetry was generated during inflation, the limits on the asymmetry parameter in order not to produce a too-large cosmological constant are very stringent ηQ<1013110144\eta_Q <10^{-131}- 10^{-144} for a number of e-folds N=5060N=50-60 in typical models. However if the charge imbalance is produced after inflation, the limits are relaxed in such a way that \eta_Q<10^{-43}(100 \,\mbox{GeV}/T_Q), with TQT_Q the temperature at which the asymmetry was generated. If the charge asymmetry has ever existed and the associated electromagnetic fields vanish in the asymptotic future, the limit can be further reduced to ηQ<1028\eta_Q<10^{-28}.Comment: 10 pages, 6 figure
    corecore