16 research outputs found

    Plasticity, exudation and microbiome-association of the root system of Pellitory-of-the-wall plants grown in environments impaired in iron availability

    Get PDF
    The investigation of the adaptive strategies of wild plant species to extreme environments is a challenging issue, which favors the identification of new traits for plant resilience. We investigated different traits which characterize the root-soil interaction of Parietaria judaica, a wild plant species commonly known as "Pellitory-of-the-wall". P. judaica adopts the acidification-reduction strategy (Strategy I) for iron (Fe) acquisition from soil, and it can complete its life cycle in highly calcareous environments without any symptoms of chlorosis. In a field-to-lab approach, the microbiome associated with P. judaica roots was analyzed in spontaneous plants harvested from an urban environment consisting in an extremely calcareous habitat. Also, the phenolics and carboxylates content and root plasticity and exudation were analyzed in P. judaica plants grown under three different controlled conditions mimicking the effect of calcareous environments on Fe availability: results show that P. judaica differentially modulates root plasticity under different Fe availability-impaired conditions, and that it induces, to a high extent, the exudation of caffeoylquinic acid derivatives under calcareous conditions, positively impacting Fe solubility.13n

    Single and Combined Abiotic Stress in Maize Root Morphology

    No full text
    Plants are continually exposed to multiple stresses, which co-occur in nature, and the net effects are frequently more nonadditive (i.e., synergistic or antagonistic), suggesting “unique” responses with respect to that of the individual stress. Further, plant stress responses are not uniform, showing a high spatial and temporal variability among and along the different organs. In this respect, the present work investigated the morphological responses of different root types (seminal, seminal lateral, primary and primary lateral) of maize plants exposed to single (drought and heat) and combined stress (drought + heat). Data were evaluated by a specific root image analysis system (WinRHIZO) and analyzed by uni- and multivariate statistical analyses. The results indicated that primary roots and their laterals were the types more sensitive to the single and combined stresses, while the seminal laterals specifically responded to the combined only. Further, antagonistic and synergistic effects were observed for the specific traits in the primary and their laterals and in the seminal lateral roots in response to the combined stress. These results suggested that the maize root system modified specific root types and traits to deal with different stressful environmental conditions, highlighting that the adaptation strategy to the combined stress may be different from that of the individual ones. The knowledge of “unique or shared” responses of plants to multiple stress can be utilized to develop varieties with broad-spectrum stress tolerance

    Abiotic and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-Plant Phenotypic Plasticity

    No full text
    Background: Drought, N deficiency and herbivory are considered the most important stressors caused by climate change in the agro- and eco-systems and varied in space and time shaping highly dynamic and heterogeneous stressful environments. This study aims to evaluate the tomato morpho-physiological and metabolic responses to combined abiotic and herbivory at different within-plant spatial levels and temporal scales. Methods: Leaf-level morphological, gas exchange traits and volatile organic compounds (VOCs) profiles were measured in tomato plants exposed to N deficiency and drought, Tuta absoluta larvae and their combination. Additive, synergistic or antagonistic effects of the single stress when combined were also evaluated. Morpho-physiological traits and VOCs profile were also measured on leaves located at three different positions along the shoot axes. Results: The combination of the abiotic and biotic stress has been more harmful than single stress with antagonistic and synergistic but non-additive effects for the morpho-physiological and VOCs tomato responses, respectively. Combined stress also determined a high within-plant phenotypic plasticity of the morpho-physiological responses. Conclusions: These results suggested that the combined stress in tomato determined a “new stress state” and a higher within-plant phenotypic plasticity which could permit an efficient use of the growth and defense resources in the heterogeneous and multiple stressful environmental conditions

    Monoterpene Synthase Genes and Monoterpene Profiles in Pinus nigra subsp. laricio

    No full text
    In the present study, we carried out a quantitative analysis of the monoterpenes composition in different tissues of the non-model conifer Pinus nigra J.F. Arnold subsp. laricio Palib. ex Maire (P. laricio, in short). All the P. laricio tissues examined showed the presence of the same fourteen monoterpenes, among which the most abundant were β-phellandrene, α-pinene, and β-pinene, whose distribution was markedly tissue-specific. In parallel, from the same plant tissues, we isolated seven full-length cDNA transcripts coding for as many monoterpene synthases, each of which was found to be attributable to one of the seven phylogenetic groups in which the d1-clade of the canonical classification of plants’ terpene synthases can be subdivided. The amino acid sequences deduced from the above cDNA transcripts allowed to predict their putative involvement in the biosynthesis of five of the monoterpenes identified. Transcripts profiling revealed a differential gene expression across the different tissues examined, and was found to be consistent with the corresponding metabolites profiles. The genomic organization of the seven isolated monoterpene synthase genes was also determined

    Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide

    No full text
    Simple Summary Research about innovative sustainable ecofriendly pesticides is a key topic of global interest, aiming to reduce synthetic inputs in agriculture, to protect biodiversity, and to ensure food safety to consumers. Botanical substances, and in particular essential oils, are among the most promising natural pesticides, as can be seen from the incredibly large number of published studies in the last two decades. Nevertheless, most research is limited to laboratory studies, leaving a gap between scientific studies and field applications. In this scenario, the aim of this paper was to evaluate the feasibility of an innovative nano-insecticide containing sweet orange essential oil as the active ingredient against a key aphid pest in real conditions. Due to its high polyphagy, Aphis gossypii is considered a key pest of many crops, and it can feed on hundreds of plant species belonging to the families Cucurbitaceae, Malvaceae, Solanaceae, Rutaceae, and Asteraceae. The control of this pest mainly relies on synthetic insecticides whose adverse effects on the environment and human health are encouraging researchers to explore innovative, alternative solutions. In this scenario, essential oils (EOs) could play a key role in the development of ecofriendly pesticides. In this study, the development of a citrus peel EO-based nano-formulation and its biological activity against A. gossypii both in the laboratory and field were described and evaluated. The phytotoxicity towards citrus plants was also assessed. The developed nano-insecticide highlighted good aphicidal activity both in the laboratory and field trials, even at moderate EO concentrations. However, the highest tested concentrations (4 and 6% of active ingredient) revealed phytotoxic effects on the photosynthetic apparatus; the side effects need to be carefully accounted for to successfully apply this control tool in field conditions

    Current and Potential Future Distribution of Endemic <i>Salvia ceratophylloides</i> Ard. (Lamiaceae)

    Get PDF
    Human activities and climate change are the main factors causing habitat loss, jeopardising the survival of many species, especially those with limited range, such as endemic species. Recently, species distribution models (SDMs) have been used in conservation biology to assess their extinction risk, environmental dynamics, and potential distribution. This study analyses the potential, current and future distribution range of Salvia ceratophylloides Ard., an endemic perennial species of the Lamiaceae family that occurs exclusively in a limited suburban area of the city of Reggio Calabria (southern Italy). The MaxEnt model was employed to configure the current potential range of the species using bioclimatic and edaphic variables, and to predict the potential suitability of the habitat in relation to two future scenarios (SSP245 and SSP585) for the periods 2021–2040 and 2041–2060. The field survey, which spanned 5 years (2017–2021), involved 17 occurrence points. According to the results of the MaxEnt model, the current potential distribution is 237.321 km2, which considering the preferred substrates of the species and land-use constraints is re-estimated to 41.392 km2. The model obtained from the SSP245 future scenario shows a decrease in the area suitable for the species of 35% in the 2021–2040 period and 28% in the 2041–2060 period. The SSP585 scenario shows an increase in the range suitable for hosting the species of 167% in the 2021–2040 period and 171% in the 2041–2060 period. Assessing variation in the species distribution related to the impacts of climate change makes it possible to define priority areas for reintroduction and in situ conservation. Identifying areas presumably at risk or, on the contrary, suitable for hosting the species is of paramount importance for management and conservation plans for Salvia ceratophylloides

    Diterpene Resin Acids and Olefins in Calabrian Pine (Pinus nigra subsp. laricio (Poiret) Maire) Oleoresin: GC-MS Profiling of Major Diterpenoids in Different Plant Organs, Molecular Identification and Expression Analysis of Diterpene Synthase Genes

    No full text
    A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants&rsquo; terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms

    The Assessment and the Within-Plant Variation of the Morpho-Physiological Traits and VOCs Profile in Endemic and Rare Salvia ceratophylloides Ard. (Lamiaceae)

    No full text
    Salvia ceratophylloides (Ard.) is an endemic and rare plant species recently rediscovered as very few individuals at two different Southern Italy sites. The study of within-plant variation is fundamental to understand the plant adaptation to the local conditions, especially in rare species, and consequently to preserve plant biodiversity. Here, we reported the variation of the morpho-ecophysiological and metabolic traits between the sessile and petiolate leaf of S. ceratophylloides plants at two different sites for understanding the adaptation strategies for surviving in these habitats. The S. ceratophylloides individuals exhibited different net photosynthetic rate, maximum quantum yield, light intensity for the saturation of the photosynthetic machinery, stomatal conductance, transpiration rate, leaf area, fractal dimension, and some volatile organic compounds (VOCs) between the different leaf types. This within-plant morpho-physiological and metabolic variation was dependent on the site. These results provide empirical evidence of sharply within-plant variation of the morpho-physiological traits and VOCs profiles in S. ceratophylloides, explaining the adaptation to the local conditions
    corecore