207 research outputs found
Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Static Magnetic Fields
In the photovoltaics industry, the largest market share is represented by solar cells made from multicrystalline silicon, which is grown by directional solidification. During the growth process, the silicon melt is in contact with the silicon nitride coated crucible walls and the furnace atmosphere which contains carbon monoxide. The dissolution of the crucible coating, the carbon bearing gas, and the carbon already present in the feedstock, lead to the precipitation of silicon carbide, and silicon nitride, at later stages of the growth process. The precipitation of Si3N4 and SiC particles of up to several hundred micrometers in diameter leads to severe problems during the wire sawing process for wafering the ingots. Furthermore the growth of the silicon grains can be negatively influenced by the presence of particles, which act as nucleation sources and lead to a grit structure of small grains and are sources for dislocations. If doped with Nitrogen from the dissolved crucible coating, SiC is a semi conductive material, and can act as a shunt, short circuiting parts of the solar cell. For these reasons, the incorporation of such particles needs to be avoided. In this contribution we performed model experiments in which the transport of intentionally added SiC particles and their interaction with the solid-liquid interface during float zone growth of silicon in strong steady magnetic fields was investigated. SiC particles of 7m and 60m size are placed in single crystal silicon [100] and [111] rods of 8mm diameter. This is achieved by drilling a hole of 2mm diameter, filling in the particles and closing the hole by melting the surface of the rod until a film of silicon covers the hole. The samples are processed under a vacuum of 1x10(exp -5) mbar or better, to prevent gas inclusions. An oxide layer to suppress Marangoni convection is applied by wet oxidation. Experiments without and with static magnetic field are carried out to investigate the influence of melt convection on the distribution of particles and their incorporation into the crystal. The field strengths applied by a superconducting magnet are 1T, 3T, 4.5T, and 5T. The increase in field strength dampens the melt flow, and so this study provides comparative data to the crystal growth experiment to be carried out onboard the sounding rocket mission TEXUS 51, where purely diffusive growth condition will be achieved under microgravity conditions
Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields
Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed
Hanbury Brown and Twiss interferometry at a free-electron laser
We present measurements of second- and higher-order intensity correlation
functions (so-called Hanbury Brown and Twiss experiment) performed at the
free-electron laser (FEL) FLASH in the non-linear regime of its operation. We
demonstrate the high transverse coherence properties of the FEL beam with a
degree of transverse coherence of about 80% and degeneracy parameter of the
order 10^9 that makes it similar to laser sources. Intensity correlation
measurements in spatial and frequency domain gave an estimate of the FEL
average pulse duration of 50 fs. Our measurements of the higher-order
correlation functions indicate that FEL radiation obeys Gaussian statistics,
which is characteristic to chaotic sources.Comment: 19 pages, 6 figures, 1 table, 40 reference
Brønsted Acid Catalysis—Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes
Despite the huge success of enantioselective Bronsted acid catalysis, experimental data about structures and activation modes of substrate/catalyst complexes in solution are very rare. Here, for the first time, detailed insights into the structures of imine/Bronsted acid catalyst complexes are presented on the basis of NMR data and underpinned by theoretical calculations. The chiral Bronsted acid catalyst R-TRIP (3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate) was investigated together with six aromatic imines. For each investigated system, an E-imine/R-TRIP complex and a Z-imine/R-TRIP complex were observed. Each of these complexes consists of two structures, which are in fast exchange on the NMR time scale; i.e., overall four structures were found. Both identified E-imine/R-TRIP structures feature a strong hydrogen bond but differ in the orientation of the imine relative to the catalyst. The exchange occurs by tilting the imine inside the complex and thereby switching the oxygen that constitutes the hydrogen bond. A similar situation is observed for all investigated Z-imine/R-TRIP complexes. Here, an additional exchange pathway is opened via rotation of the imine. For all investigated imine/R-TRIP complexes, the four core structures are highly preserved. Thus, these core structures are independent of electron density and substituent modulations of the aromatic imines. Overall, this study reveals that the absolute structural space of binary imine/TRIP complexes is large and the variations of the four core structures are small. The high mobility is supposed to promote reactivity, while the preservation of the core structures in conjunction with extensive pi-pi and CH-pi interactions leads to high enantioselectivities and tolerance of different substrates
Influence of Containment on the Growth of Germanium-Silicon in Microgravity
This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: Float zone growth, Bridgman growth, and Detached Bridgman growth. The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth
NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in Brønsted Acid Catalysis
Hydrogen bonding plays a crucial role in Bronsted acid catalysis. However, the hydrogen bond properties responsible for the activation of the substrate are still under debate. Here, we report an in depth study of the properties and geometries of the hydrogen bonds in (R)-TRIP imine complexes (TRIP: 3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate). From NMR spectroscopic investigations H-1 and N-15 chemical shifts, a Steiner-Limbach correlation, a deuterium isotope effect as well as quantitative values of (1)J(NH), (2h)J(PH) and (3h)J(PN) were used to determine atomic distances (r(OH), r(NH), r(NO)) and geometry information. Calculations at SCS-MP2/CBS//TPSS-D3/def2-SVP-level of theory provided potential surfaces, atomic distances and angles. In addition, scalar coupling constants were computed at TPSS-D3/IGLO-III. The combined experimental and theoretical data reveal mainly ion pair complexes providing strong hydrogen bonds with an asymmetric single well potential. The geometries of the hydrogen bonds are not affected by varying the steric or electronic properties of the aromatic imines. Hence, the strong hydrogen bond reduces the degree of freedom of the substrate and acts as a structural anchor in the (R)-TRIP imine complex
Highly potent bispecific sybodies neutralize SARS-CoV-2
The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair (Sb#15 and Sb#68) that can bind simultaneously to the SARS-CoV-2 spike-RBD and efficiently neutralize pseudotyped and live-viruses by interfering with ACE2 interaction. Two spatially-discrete epitopes identified by cryo-EM translated into the rational design of bispecific and tri-bispecific fusions constructs, exhibiting up to 100- and 1000-fold increase in neutralization potency. Cryo-EM of the sybody-spike complex further revealed a novel up-out RBD conformation. While resistant viruses emerged rapidly in the presence of single binders, no escape variants were observed in presence of the bispecific sybody. The multivalent bispecific constructs further increased the neutralization potency against globally-circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the development of clinically relevant therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants
Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001)
We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell’Angela et al. Science 339 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2  ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process
Kernel Flow:a high channel count scalable time-domain functional near-infrared spectroscopy system
Significance: Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. Aim: Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. Approach: The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. Results: We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. Conclusions: The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.</p
- …