680 research outputs found

    Per os infectivity of white spot syndrome virus (WSSV) in white-legged shrimp (Litopenaeus vannamei) and role of peritrophic membrane

    Get PDF
    As earlier observations on peroral infectivity of WSSV in white-legged shrimp are conflicting, here, a standardized peroral intubation technique was used to examine (i) the role of the physical composition of the viral inoculum and (ii) the barrier function of the PM. In a first experiment, the infectivity of a WSSV stock was compared by determining the SID50 by intramuscular injection, peroral inoculation or via feeding. The following titers were obtained: 108.77 SID50/g by intramuscular injection, 10(1.23) SID50/g by peroral inoculation and 100.73 SID50/g by feeding. These results demonstrated that 10(7.54)-10(8.03) infectious virus is needed to infect shrimp by peroral inoculation and via feeding. Next, it was examined if damage of the PM may increase the susceptibility for WSSV by peroral route. The infectivity of a virus stock was tested upon peroral inoculation of shrimp with and without removal of the PM and compared with the infectivity upon intramuscular inoculation. The virus titers obtained upon intramuscular injection and peroral inoculation of shrimp with and without PM were 10(8.63), 10(1.13) and 10(1.53) SID50/mL, respectively. This experiment confirmed the need of 10(7.1)-10(7.5) infectious virus to infect shrimp via peroral route and showed that the removal of the PM slightly but not significantly (p > 0.05) facilitated the infection of shrimp. This study indicated that WSSV contaminated feed is poorly infectious via peroral route, whereas it is highly infectious when injected into shrimp. The PM plays a minor role as internal barrier of shrimp against WSSV infection

    Aquaculture production and its environmental sustainability in Thailand : challenges and potential solutions

    Get PDF
    Though aquaculture plays an important role in providing foods and healthy diets, there are concerns regarding the environmental sustainability of prevailing practices. This study examines the trends and changes in fisheries originating from aquaculture production in Thailand and provides insights into such production’s environmental impacts and sustainability. Together with an extensive literature review, we investigated a time series of Thai aquaculture production data from 1995 to 2015. Overall, Thai aquaculture production has significantly increased during the last few decades and significantly contributed to socio-economic development. Estimates of total aquaculture production in Thailand have gradually grown from around 0.6 to 0.9 million tons over the last twenty years. Farmed shrimp is the main animal aquatic product, accounting for an estimated 40% of total yields of aquaculture production, closely followed by fish (38%) and mollusk (22%). Estimates over the past decades indicate that around 199470 ha of land is used for aquaculture farming. Out of the total area, 61% is used for freshwater farms, and 39% is used for coastal farms. However, this industry has contributed to environmental degradation, such as habitat destruction, water pollution, and ecological effects. Effective management strategies are urgently needed to minimize the environmental impacts of aquaculture and to ensure it maximally contributes to planetary health. Innovative and practical solutions that rely on diverse technology inputs and smart market-based management approaches that are designed for environmentally friendly aquaculture farming can be the basis for viable long-term solutions for the future

    Early mortality syndrome outbreaks : a microbial management issue in shrimp farming?

    Get PDF
    A recent disease of farmed Penaeid shrimp, commonly referred to as ‘‘early mortality syndrome’ ’ (EMS) or more technically known as ‘‘acute hepatopan-creatic necrosis disease’ ’ (AHPND), was first reported in southern China in 2010 and subsequently in Vietnam, Thailand, and Malaysia [1]. The EMS/AHPND disease typically affects shrimp postlarvae within 20–30 days after stocking and frequently causes up to 100 % mortality. The Global Aquaculture Alliance [2] has estimated that losses to the Asian shrimp culture sector amount to USD 1 billion. The causative agent of EMS/AHPND ha

    Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture.

    Get PDF
    Bacterial disease is one of the most critical problems in commercial aquaculture. Although various methods and treatments have been developed to curb the problem, yet they still have significant drawbacks. A novel and environmental-friendly approach in solving this problem is through the disruption of bacterial communication or quorum sensing (QS). In this communication scheme, bacteria regulate their own gene expression by producing, releasing, and sensing chemical signals from the environment. There seems to be a link between QS and diseases through the regulation of certain phenotypes and the induction of virulence factors responsible for pathogen-host association. Several findings have reported that numerous aquatic organisms such as micro-algae, macro-algae, invertebrates, or even other bacteria have the potential to disrupt QS. The mechanism of action varies from degradation of signals through enzymatic or chemical inactivation to antagonistic as well as agonistic activities. This review focuses on the existing marine organisms that are able to interfere with QS with potential application for aquaculture as bacterial control
    corecore