93 research outputs found

    Preliminary results on the nutritional evaluation of omega-3-HUFA-enriched <i>Artemia</i> nauplii for larvae of the sea bass, <i>Dicentrarchus labrax</i>

    Get PDF
    Freshly hatched San Pablo Bay and Great Salt Lake Artemia nauplii (omega-3-HUFA-poor) and enriched meta-nauplii (omega-3-HUFA-enriched)were compared to reference Artemia nauplii (omega-3-HUFA-rich) as a food source for the larvae of the sea bass, Dicentrarchus labrax. Significant differences in survival and biomass production between the treatments could be attributed to the omega-3-HUFA content of the food. A delayed mortality in fish larvae fed the Great Salt Lake Artemia is suspected to be caused by a high level of alpha-BHC in this Artemia source. Growth was not significantly different between the treatments, most probably due to the large variation in growth rate within the treatments, as well as the low number of surviving fish in some treatments

    Murine norovirus virulence factor 1 (VF1) protein contributes to viral fitness during persistent infection

    Get PDF
    Murine norovirus (MNV) is widely used as a model for studying norovirus biology. While MNV isolates vary in their pathogenesis, infection of immunocompetent mice mostly results in persistent infection. The ability of a virus to establish a persistent infection is dependent on its ability to subvert or avoid the host immune response. Previously, we described the identification and characterization of virulence factor 1 (VF1) in MNV, and demonstrated its role as an innate immune antagonist. Here, we explore the role of VF1 during persistent MNV infection in an immunocompetent host. Using reverse genetics, we generated MNV-3 viruses carrying a single or a triple termination codon inserted in the VF1 ORF. VF1-deleted MNV-3 replicated to comparable levels to the wildtype virus in tissue culture. Comparative studies between MNV-3 and an acute MNV-1 strain show that MNV-3 VF1 exerts the same functions as MNV-1 VF1, but with reduced potency. C57BL/6 mice infected with VF1-deleted MNV-3 showed significantly reduced replication kinetics during the acute phase of the infection, but viral loads rapidly reached the levels seen in mice infected with wildtype virus after phenotypic restoration of VF1 expression. Infection with an MNV-3 mutant that had three termination codons inserted into VF1, in which reversion was suppressed, resulted in consistently lower replication throughout a 3 month persistent infection in mice, suggesting a role for VF1 in viral fitness in vivo. Our results indicate that VF1 expressed by a persistent strain of MNV also functions to antagonize the innate response to infection. We found that VF1 is not essential for viral persistence, but instead contributes to viral fitness in mice. These data fit with the hypothesis that noroviruses utilize multiple mechanisms to avoid and/or control the host response to infection and that VF1 is just one component of this

    Norovirus-mediated modification of the translational landscape via virus and host-induced cleavage of translation initiation factors

    Get PDF
    Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded VPg protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyse changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.This work was supported by grants from the Wellcome Trust (097997/Z/11/Z, 101602/Z/13/Z) and BBSRC (Refs: BB/N001176/1 and BB/K002465/1) to IG, and an equipment grant to KH, IG (and others) from the Wellcome Trust (104914/Z/14/Z). RL is supported by a grant from the National Institutes for Health of the United States of America (AI50237). NL is supported by a BBSRC grant (BB/I01232X/1). IG is a Wellcome Senior Fellow. This work was also supported by the Intramural Research Program of the NIH, NIAID

    A first AFLP-based genetic linkage map for brine shrimp Artemia franciscana and its application in mapping the sex locus

    Get PDF
    We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full-sib family we identified 21 male and 22 female linkage groups (2n = 42), covering 1,041 and 1,313 cM respectively. Fifteen putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a WZ-ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species

    Norovirus Regulation of the Innate Immune Response and Apoptosis Occurs via the Product of the Alternative Open Reading Frame 4

    Get PDF
    Small RNA viruses have evolved many mechanisms to increase the capacity of their short genomes. Here we describe the identification and characterization of a novel open reading frame (ORF4) encoded by the murine norovirus (MNV) subgenomic RNA, in an alternative reading frame overlapping the VP1 coding region. ORF4 is translated during virus infection and the resultant protein localizes predominantly to the mitochondria. Using reverse genetics we demonstrated that expression of ORF4 is not required for virus replication in tissue culture but its loss results in a fitness cost since viruses lacking the ability to express ORF4 restore expression upon repeated passage in tissue culture. Functional analysis indicated that the protein produced from ORF4 antagonizes the innate immune response to infection by delaying the upregulation of a number of cellular genes activated by the innate pathway, including IFN-Beta. Apoptosis in the RAW264.7 macrophage cell line was also increased during virus infection in the absence of ORF4 expression. In vivo analysis of the WT and mutant virus lacking the ability to express ORF4 demonstrated an important role for ORF4 expression in infection and virulence. STAT1-/- mice infected with a virus lacking the ability to express ORF4 showed a delay in the onset of clinical signs when compared to mice infected with WT virus. Quantitative PCR and histopathological analysis of samples from these infected mice demonstrated that infection with a virus not expressing ORF4 results in a delayed infection in this system. In light of these findings we propose the name virulence factor 1, VF1 for this protein. The identification of VF1 represents the first characterization of an alternative open reading frame protein for the calicivirus family. The immune regulatory function of the MNV VF1 protein provide important perspectives for future research into norovirus biology and pathogenesis

    Penaeid shrimp genome provides insights into benthic adaptation and frequent molting

    Get PDF
    Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering ~1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (&gt;23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture
    • …
    corecore